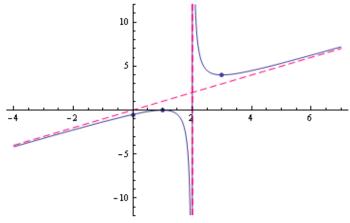
Behaviour of function

Investigate the behaviour of function *f*, if:

1.
$$f(x) = x + \frac{1}{x-2}$$

Solution:

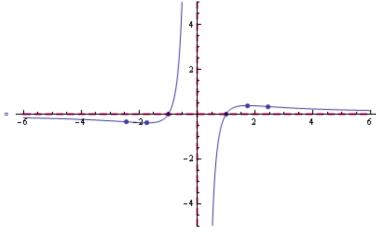
 $D(f) = R - \{2\}$, zero point x = 1, point of discontinuity x = 2, function is not even, not odd, x = 2 is equation of asymptote without slope, y = x is equation of asymptote with slope, function is increasing on $(-\infty,1)$ a $(3,\infty)$, decreasing on (1,2) a (2,3), local maximum is at the point x = 1 with value f(1) = 0, local minimum is at the point x = 3 with value f(3) = 4, function is convex on $(2,\infty)$, concave on $(-\infty,2)$, there are no inflex points, $H(f) = (-\infty,0) \cup (4,\infty)$.



2.
$$f(x) = \frac{x^2 - 1}{x^3}$$

Solution:

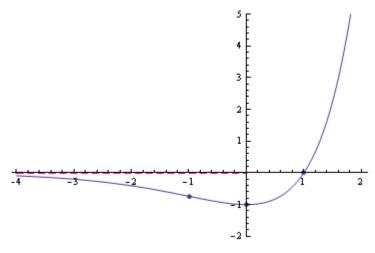
 $D(f) = R - \{0\}$, zero points x = -1, x = 1, points if discontinuity x = 0, function is odd, x = 0 is equation of asymptote without slope, y = 0 is equation of asymptote with slope, function is decreasing on $\left(-\infty, -\sqrt{3}\right)$ a $\left(\sqrt{3}, \infty\right)$, increasing on $\left(-\sqrt{3}, 0\right)$ a $\left(0, \sqrt{3}\right)$, local maximum is at the point $x = \sqrt{3}$ with value $f\left(\sqrt{3}\right) = \frac{2}{3\sqrt{3}}$, locale minimum is at the point $x = -\sqrt{3}$ with value $f\left(-\sqrt{3}\right) = -\frac{2}{3\sqrt{3}}$, finction is convex on $\left(-\sqrt{6}, 0\right)$ a $\left(\sqrt{6}, \infty\right)$, concave on $\left(-\infty, -\sqrt{6}\right)$ and $\left(0, \sqrt{6}\right)$, $x = \pm \sqrt{6}$ are points of inflexion, H(f) = R.



3.
$$f(x) = e^{x}(x-1)$$

Solution:

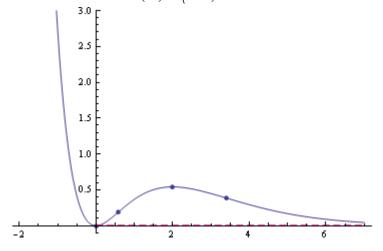
D(f) = R, zero point is x = 1, function is not odd, nor even, it has no asymptote without slope, y = 0 is equation of asymptote with slope for $x \to -\infty$, function is increasing on $\langle 0, \infty \rangle$, decreasing on $\langle -\infty, 0 \rangle$, local minimum is at the point x = 0 with value f(0) = -1, function is convex on $\langle -1, \infty \rangle$, concave on $\langle -\infty, -1 \rangle$, x = -1 is the point of inflexion, $H(f) = \langle -1, \infty \rangle$.



4.
$$f(x) = \frac{x^2}{e^x}$$

Solution:

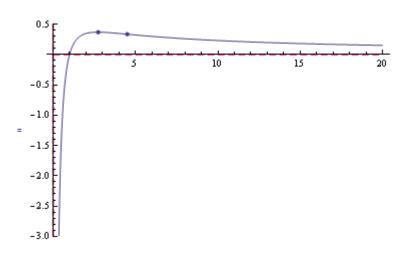
D(f)=R, zero point is x=0, function is not even, nor odd, it has no asymptotes without slope, y=0 is equation of asymptote with slope for $x\to\infty$, function is increasing on $\langle 0,2\rangle$, it is decreasing on $(-\infty,0)$ a $\langle 2,\infty\rangle$, it has local minimum at the point x=0 with value f(0)=0, local maximum at the point x=2 with value $f(2)=\frac{4}{e^2}$, function is convex on $\left(-\infty,2-\sqrt{2}\right)$ a $\left\langle 2+\sqrt{2},\infty\right\rangle$, concave on $\left\langle 2-\sqrt{2},2+\sqrt{2}\right\rangle$, points $x=2-\sqrt{2}$ a $x=2+\sqrt{2}$ are inflexion points, $H(f)=\left\langle 0,\infty\right\rangle$.



$$5. f(x) = \frac{\ln x}{x}$$

Solution:

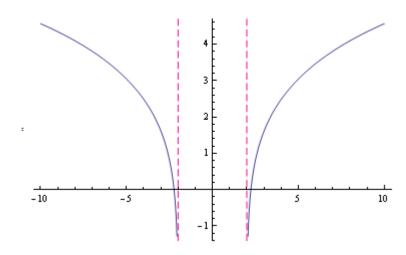
 $D(f) = (0, \infty)$, zero point is x = 1, function is not even, nor odd, x = 0 is equation of asymptote without slope, y = 0 is equation of asymptote with slope for $x \to \infty$, function is increasing on (0, e), decreasing on $\langle e, \infty \rangle$, it has local maximum at the point x = e with value $f(e) = \frac{1}{e}$, function is convex on $\langle \sqrt{e^3}, \infty \rangle$, concave on $(0, \sqrt{e^3})$, $x = \sqrt{e^3}$ is inflexion point, $H(f) = (-\infty, \frac{1}{e})$.



6.
$$f(x) = ln(x^2 - 4)$$

Solution:

 $D(f) = (-\infty, -2)U(2, \infty)$, zero points are $x = -\sqrt{5}$, $x = \sqrt{5}$, function is even, x = -2, x = 2 are equations of asymptotes without slope, function has no asymptotes with slope, i tis increasing on $(2, \infty)$, decreasing on $(-\infty, -2)$, there are no local extrema, function is concae on $(-\infty, -2)$ and $(2, \infty)$, there are no points of inflexion, H(f) = R.



7.
$$f(x) = arctg \frac{1}{x}$$

Solution:

 $D(f) = (-\infty,0) \cup (0,\infty)$, function has no zero points, one point of discontinuity x=0, it is odd, it has no asymptotes without slope, y=0 is equation of the asymptote with slope, function is decreasing on $(-\infty,0)$ and $(0,\infty)$, there are no local extrema, function is concave on $(-\infty,0)$, convex on $(0,\infty)$, there exist no points of inflexion, $H(f) = \left(-\frac{\pi}{2},0\right) \cup \left(0,\frac{\pi}{2}\right)$.

