FUNCTIONS OF ONE REAL VARIABLE

Concept of a function

Real function f of one real variable is a mapping from the set M, a subset in real numbers R, to the set of all real numbers R.

Function f is a rule, by which any real number x from set $M \subset R$ can be attached exactly one real number y = f(x).

$$f: M \to R, x \mapsto y = f(x)$$

Number $x \in M$ is independent variable - argument of a function, number $y \in M$ is dependent variable – value of a function. Set M = D(f) is called domain of definition of a function, function is defined on the set M.

Set of all values of a function is denoted H(f).

Different definitions of function

• Formula y = f(x)

D(f) is set of all such real number, for which the formula f(x) has a real meaning.

Table of values

Values of function in selected important values of variable *x* are given explicitly

- Word description of the relation
- Graph

Graph of a function

Set of all points [x, y] in the plane with defined Cartesian orthogonal coordinate system Oxy,

for which $x \in D(f)$ and y = f(x) is called graph of function f(x).

$$G(f) = \{ [x, y] \in R^2 : x \in D(f) \land y = f(x) \}$$

Curve passing through all points [x, f(x)].

A set of points in plane is graph of a function,

if each straight line parallel to y-axis

has at most one common point with it.

D(f) is orthogonal projection of G(f) onto x-axis and

H(f) is orthogonal projection of G(f) onto y-axis.

Operations on functions

1. Absolute value of a function

$$f: M \to R, x \mapsto y = f(x)$$

is function h(x)

$$h: M \to R_0^+, x \mapsto h(x)$$

defined on M and such, that for all $x \in M$ holds

$$h(x) = |f(x)|$$

Operations on functions

2. Product of a real number k and function

$$f: M \to R, x \mapsto y = f(x)$$

is function h(x)

$$h: M \to R, x \mapsto h(x)$$

defined on M and such, that for all $x \in M$ holds

$$h(x) = k.f(x)$$

Equality of functions

3. Functions f(x) and g(x) are equal if and only if they are defined on the same set of real numbers

$$D(f) = D(g)$$

and for any x from this domain of definition holds

$$f(x) = h(x)$$

Sum, difference and product of two functions

- 4. Let two real functions be given
- f(x) defined on the set $M_1 \subset R$
- g(x) defined on the set $M_2 \subset R$.

Function h(x), with the domain of definition $M = M_1 \cap M_2$ is called

• sum of functions, if for all $x \in M$ holds

$$h(x) = f(x) + g(x)$$

• difference of functions, if for all $x \in M$ holds h(x) = f(x) - g(x)

• product of functions, if for all $x \in M$ holds

$$h(x) = f(x).g(x)$$

Quotient of two functions

- 5. Let two functions be given
 - f(x) defined on the set $M_1 \subset R$
 - g(x) defined on the set $M_2 \subset R$.
 - Let $M \subset M_1 \cap M_2$ be the set of all such real numbers, for which the inequality holds: $g(x) \neq 0$.
 - Function h(x), with the domain of definition M is called
- quotient of functions, if for all $x \in M$ holds

$$h(x) = \frac{f(x)}{g(x)}$$

Composite functions

Function $h(x) = (f \cdot g)(x)$ is called a composite function composed from functions f(x) and g(x) if and only if domain of definition of function h(x) is set of all such numbers from the domain of definition D(g) of function g(x), in which the value of function g(x) is a number from the domain of definition D(f) of function f(x) and for any number $x \in M$ holds

$$h(x) = f[g(x)]$$

Value of function h(x) in number x equals to the value of function f(u) in number u = g(x). Function f(u) is the major (outside) component, function u = g(x) is the minoir (inside) component of the composite function h(x).

One-to-one function

Function f(x) defined on the set D(f) is denoted as one-to-one function, if for any two numbers x_1 , x_2 from D(f) holds:

$$x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

A function f is one-to-one if each straight line parallel to x-axis has at most one common point with G(f).

Inverse function

Let function f(x) be defined on the set D(f) and its set of values be H(f). Function $f^{-1}(x)$ defined on the set H(f), with values in the set D(f) is called inverse function to the function f(x), if for any number b from H(f) holds:

$$f^{-1}(b) = a \Leftrightarrow f(a) = b$$

Graphs of inverse functions f(x) and $f^{-1}(x)$ are symmetric with respect to the line x = y.

Bounded function

Function f(x) defined on the set D(f) is called bounded (bounded above, bounded below), iff there exists a real number K such, that for all x from D(f) holds:

$$|f(x)| \le K \quad (f(x) \le K, f(x) \ge K)$$

It means, that a function is bounded (bounded above, bounded below), if its range H(f) is a bounded (bounded above, bounded below) set of real numbers.

Function that is not bounded is called unbounded function.

Monotone functions

Function f(x) defined on the set M is called increasing, if

$$\forall x_1, x_2 \in M, x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$$

decreasing, if

$$\forall x_1, x_2 \in M, x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$$

non-decreasing, if

non-increasing, if
$$\forall x_1, x_2 \in M, x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$$

$$\forall x_1, x_2 \in M, x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$$

The above functions are said to be monotone on *M*, incresing and decresing functions are said to be **strictly monotone**.

Even and odd functions

Let function f(x) be defined on the set M, which contains with any number x also number -x.

Function f(x) is said to be even on M, if

$$\forall x \in M \Rightarrow f(-x) = f(x)$$

Function f(x) is said to be odd on M, if

$$\forall x \in M \Rightarrow f(-x) = -f(x)$$

Graph of an even function is symmetric with respect to the y-axis, while graph of an odd function is symmetric with respect to the origin *O* of the coordinate system.

Periodic function

Let function f(x) be defined on the set M and p be a positive real number.

Function f is called periodic with the period p, if

- 1. for any $p \in M$ also number $x \pm p \in M$
- 2. for all $x \in M$ holds

$$f(x \pm p) = f(x)$$