DEFINITE INTEGRAL

Let $J = \langle a, b \rangle$ be closed interval on set **R**. Ordered set of points

$$D = \{x_0, x_1, ..., x_n\}, \text{ kde } a = x_0 < x_1 < ... < x_n = b$$

is called division of interval J.

Interval $\langle x_{i-1}, x_i \rangle$ is called *i*-th partial interval, $\Delta x_i = x_i - x_{i-1}$ is the length of this partial interval

$$\xi_i \in \langle x_{i-1}, x_i \rangle \Rightarrow f(\xi_i) \Rightarrow f(\xi_i).\Delta x_i \Rightarrow \sum_{i=1}^n f(\xi_i).\Delta x_i$$

Definite integral

Let function f(x) be bounded on interval $J = \langle a, b \rangle$.

If for any selection of points ξ_i there exists the same proper limit \underline{n}

 $\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$

then the limit is called definite integral of function f(x) on interval $J = \langle a, b \rangle$ and it is denoted

$$\int_{a}^{b} f(x)dx = \lim_{\max \Delta x_{i} \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

Function f(x) is called integrable on interval J.

The following rules hold:

1.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\int_{a}^{a} f(x)dx = 0$$

Basic properties of definite integral

1. Function f(x) that is continuous on interval $J = \langle a, b \rangle$, is integrable on this interval.

2.Function f(x) that is bounded on interval $J = \langle a, b \rangle$, while it has just a finite number of points of discontinuity on this interval, is integrable on this interval.

3. Let functions f(x) and g(x) be integrable on interval $J = \langle a, b \rangle$ and let $c \in \langle a, b \rangle$, $k \in R$. Then the following hold:

a)
$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

b)
$$\int_{a}^{b} k.f(x)dx = k.\int_{a}^{b} f(x)dx$$

c)
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

4. If for all $x \in \langle a, b \rangle$ holds $f(x) \geq 0$, then

$$\int_{a}^{b} f(x)dx \ge 0$$

5. If for all $x \in \langle a, b \rangle$ holds $f(x) \leq g(x)$, then

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

Evaluation of definite integral

Newton-Leibniz formula

Let functions f(x) and F(x) be continuous on interval $J = \langle a, b \rangle$ and let function F(x) be antiderivative of function f(x) on interval (a, b). Then the following holds:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Basic integration methods for definite intregrals

1. Integration by Parts (Per Partes Methods)

Let u(x) and v(x) be functions with continuous derivatives u'(x) and v'(x) defined on intervale J. Then on interval J holds

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx$$

Basic integration methods for definite intregrals

2. Substitution method

If the function integrated on interval $\langle a, b \rangle$ can be represented in the form $f(\varphi(x)).\varphi'(x)$, where $\varphi(x)$ and $\varphi'(x)$ are continuous functions on interval $\langle a, b \rangle$ and function f(x) is continuous at all points $t = \varphi(x), x \in \langle a, b \rangle$, then holds

$$\int_{a}^{b} f(\varphi(x)).\varphi'(x)dx = \int_{\varphi(a)}^{\varphi(b)} f(t)dt$$

Some basic properties

1. Let f(x) be an even function, then

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$

2. Let f(x) be an odd function, then

$$\int_{-a}^{a} f(x)dx = 0$$

Mean value of function on interval

Let function f(x) be integrable on interval $\langle a, b \rangle$, then number

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

is the mean value of function f(x) on interval $\langle a, b \rangle$.

Let f(x) be a continuous function on interval $\langle a, b \rangle$, then there exists at least one number $c \in \langle a, b \rangle$ such, that

$$\mu = f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$