
INDEFINITE INTEGRAL 



 Let J = (a, b) be open interval in real numbers R. 

  

 Function F(x) is called  

 antiderivative (primitive function)  

 of function  f(x) on interval J  

 if and only if for all x from interval J holds 

        

    F’(x) = f(x).  



 The following theorems hold:  
 

 1. Let function F(x) be antiderivative of function f(x) on     
interval J, then also function F(x) + c is antiderivative  of 
function f(x) on interval J for any real number c.  

 

 2. Let functions F(x) and G(x) be antiderivatives of function 
f(x) on interval J. Then there exists such real number c, that 
for all x from interval J hold 

      G(x) = F(x) + c  
 

  3. Let function f(x) be continuous on interval J, then there 
exists an antiderivative of f(x) on interval J.      



 Indefinite integral 

 Set of all antiderivatives of  function f(x) on 
interval J  is called indefinite integral of function 
f(x), which is denoted 

   

 To integrate a function means to find all its 
antiderivatives .  

 If 

 
  

 Real number c is called integration constant, 
integrated function is called integrand, expression 
dx determines integration variable. 
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 Properties of indefinite integrals: 

  

1.  

 

 

 

2.  
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 Basic integration formulas  
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 All formulas hold on any open interval J = (a, b), 
which is the subset of domain of definition of 
the integrated function.  
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 Basic properties of indefinite integrals 

 If there exist antiderivatives of functions f(x) 
and g(x) on interval J, then also functions 

   f(x)  g(x) and k. f(x), k  R  

 have antiderivatives on interval J, while: 

  

 1.  

 

 2.  
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 Basic integration methods 

 

 1. Per Partes Method – Integration by Parts 

 Let u(x) and v(x) be functions, that are 
differentiable on interval J, while their 
derivatives u´(x) and v´(x) are continuous.  

 Then on interval J holds 
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  Basic integration methods 

 

 2. Substitution method 

 Let F(t) be antiderivative of function f(t) on 
interval (a, b).  Let function (x) be differentiable 
on interval ( , ) while ´(x) be its continuous 
derivative and let for all x  ( , ) be (x)  (a, b). 
Then holds 
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 Symbolic notation 
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  if there exists  -1(x).  
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