INDEFINITE INTEGRAL

Let J = (a, b) be open interval in real numbers **R**.

Function F(x) is called **antiderivative** (primitive function) of function f(x) on interval J if and only if for all x from interval J holds

$$F'(x)=f(x).$$

The following theorems hold:

- 1. Let function F(x) be antiderivative of function f(x) on interval J, then also function F(x) + c is antiderivative of function f(x) on interval J for any real number c.
- 2. Let functions F(x) and G(x) be antiderivatives of function f(x) on interval J. Then there exists such real number c, that for all x from interval J hold

$$G(x) = F(x) + c$$

3. Let function f(x) be continuous on interval J, then there exists an antiderivative of f(x) on interval J.

Indefinite integral

Set of all antiderivatives of function f(x) on interval J is called indefinite integral of function f(x), which is denoted $\int f(x) dx$

To integrate a function means to find all its antiderivatives .

If
$$\forall x \in J : F'(x) = f(x) \Rightarrow$$

$$\int f(x)dx = F(x) + c, \forall x \in J, c \in R$$

Real number c is called integration constant, integrated function is called integrand, expression dx determines integration variable.

Properties of indefinite integrals:

1.
$$\int f'(x)dx = f(x) + c, \forall x \in J, c \in R$$

2.
$$[\int f(x)dx]' = f(x), \forall x \in J$$

Basic integration formulas

1.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c, \alpha \neq -1, \alpha \in R$$

$$2. \int_{-\mathcal{X}}^{1} dx = \ln|x| + c$$

$$3. \int e^x dx = e^x + c$$

4.
$$\int a^x dx = \frac{a^x}{\ln a} + c, a > 0, a \neq 1$$

$$5. \int \sin x dx = -\cos x + c$$

$$6. \int \cos x dx = \sin x + c$$

7.
$$\int \frac{1}{\cos^2 x} dx = tgx + c$$

$$8. \int \frac{1}{\sin^2 x} dx = -\cot gx + c$$

$$9. \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + c, a > 0$$

$$10. \int \frac{1}{1+x^2} dx = arctgx + c$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + c, a > 0$$

11.
$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln |x + \sqrt{x^2 \pm a^2}| + c$$

12.
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

All formulas hold on any open interval J = (a, b), which is the subset of domain of definition of the integrated function.

Basic properties of indefinite integrals

If there exist antiderivatives of functions f(x) and g(x) on interval J, then also functions

$$f(x) \pm g(x)$$
 and k . $f(x)$, $k \in \mathbf{R}$

have antiderivatives on interval *J*, while:

1.
$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$$

$$\int k.f(x)dx = k.\int f(x)dx$$

Basic integration methods

1. Per Partes Method – Integration by Parts

Let u(x) and v(x) be functions, that are differentiable on interval J, while their derivatives u'(x) and v'(x) are continuous.

Then on interval J holds

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$$

Basic integration methods

2. Substitution method

Let F(t) be antiderivative of function f(t) on interval (a, b). Let function $\varphi(x)$ be differentiable on interval (α, β) while $\varphi'(x)$ be its continuous derivative and let for all $x \in (\alpha, \beta)$ be $\varphi(x) \in (a, b)$. Then holds

$$\int f(\varphi(x))\varphi'(x)dx = F(\varphi(x)) + c, x \in (\alpha, \beta)$$

Symbolic notation

1.

$$\int f(\varphi(x))\varphi'(x)dx = \begin{vmatrix} t = \varphi(x) \\ dt = \varphi'(x)dx \end{vmatrix} =$$

$$= \int f(t)dt = F(t) + c = F(\varphi(x)) + c, x \in (\alpha, \beta)$$

2.
$$\int f(x)dx = \begin{vmatrix} x = \varphi(t) \Rightarrow t = \varphi^{-1}(x) \\ dx = \varphi'(t)dt \end{vmatrix} =$$

$$= \int f(\varphi(t))\varphi'(t)dt = F(t) + c = F(\varphi^{-1}(x)) + c$$
if there exists $\varphi^{-1}(x)$.