Infinite number series

Let a sequence of real numbers be given as

$${a_n} = a_1, a_2, ..., a_n, ...$$

Then, an expression

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

is called **infinite number series**, while a_n is the n-th term of the series. Number

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n, n = 1, 2, \dots$$

is called the n-th partial sum of an infinite number series.

Number series is said to be **convergent**, if the sequnce $\{s_n\}$ of its partial sums has a proper limit

$$s = \lim_{n \to \infty} s_n$$

and number s is called the sum of the infinite number series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots = s$$

If the sequence $\{s_n\}$ does not have a proper limit, then the related infinite number series is said to be **divergent**.

$$\sum_{n=1}^{\infty} n = 1 + 2 + \dots + n + \dots, \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{n(n+1)}{2} = \infty$$

$$\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + \dots + (-1)^n + \dots, \lim_{n \to \infty} s_n = does \ not \ exist$$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \dots, \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} = 2$$

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots, \lim_{n \to \infty} s_n = \infty$$

Harmonic series

Necessary condition for the convergence of a number series

Let the infinite number series $\sum_{n=1}^{\infty} a_n$ be convergent, then $\lim_{n\to\infty} a_n = 0$.

If this condition is not valid for the terms of an infinite number series, then this series is necessarily divergent.

Majorant series to an infinite number series $\sum_{n=1}^{\infty} a_n$ is an infinite number

series $\sum_{n=1}^{\infty} b_n$ such, that for any *n* the next inequality holds for their terms

$$b_n \ge |a_n|$$
.

An infinite number series $\sum_{n=1}^{\infty} a_n$ is said to be absolutely convergent, if also

the series $\sum_{n=1}^{\infty} |a_n|$ is convergent;

If the series $\sum_{n=1}^{\infty} |a_n|$ is divergent, then the series $\sum_{n=1}^{\infty} a_n$ is relatively convergent.

Criteria for convergence

Rules for proving the convergence (divergence) of an infinite number series

1. Comparison test (criterion)

- Let $\sum_{n=1}^{\infty} a_n$ be such infinite number series, that there exist a convergent majorant number series $\sum_{n=1}^{\infty} b_n$; then also the series $\sum_{n=1}^{\infty} a_n$ is convergent.
- If the infinite number series $\sum_{n=1}^{\infty} a_n$ is divergent, then also its majorant number series $\sum_{n=1}^{\infty} b_n$ is divergent.

If the convergence of a given series is assumed, then it is enought to find a majorant convergent series (geometric series be the mostly used one).

If the divergence of a given series is assumed, then it is necessary to find a divergent series, for which the given series is majorant (harmonic series of one of its modifications is frequently used).

2. D'Alembert criterion for convergence

Let for an infinite number series $\sum_{n=1}^{\infty} a_n$ holds $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lambda$, then

- series is divergent for $\lambda > 1$,
- series is absolutely convergent for $\lambda < 1$,
- for $\lambda = 1$, we cannot decide about the convergence (divergence) of the number series.

3. Cauchy criterion for convergence

Let for an infinite number series $\sum_{n=1}^{\infty} a_n$ holds $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lambda$, then

- series is divergent $\lambda > 1$,
- series is absolutely convergent for $\lambda < 1$,
- for $\lambda = 1$, we cannot decide about the convergence (divergence) of the number series.

Alternating (oscilating) series

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + ..., \forall n, a_n > 0 \ (a_n < 0)$$

Leibniz criterion for convergence

Let for all natural numbers n holds $0 < a_{n+1} \le a_n$, then an alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n \text{ is convergent if and only if } \lim_{n \to \infty} a_n = 0.$$