Quadric surfaces

1. Find, which quadric surface is determined by the following equation:

a)
$$x^2 + y^2 + z^2 - 2z = 0$$

b)
$$2x^2 + 2y^2 + z^2 - 8 = 0$$

c)
$$9x^2 + 9y^2 - 4z^2 - 36 = 0$$

d)
$$25x^2 + 4y^2 - 100z^2 + 100 = 0$$

e)
$$(z-1)^2 = x^2 + y^2$$

f)
$$x^2 = y^2 + z^2$$

g)
$$z = 4 + x^2 + y^2$$

h)
$$x = 1 - y^2 - z^2$$

i)
$$y = x^2 + z^2$$

j)
$$(x-1)^2 + y^2 = 1$$

k)
$$x^2 + z^2 = 4$$

1)
$$x = y^2$$

m)
$$z = 4 - y^2$$

- **Solution:** a) sphere with centre S = [0, 0, 1] and radius r = 1
 - b) ellipsoid with centre S = [0, 0, 0] and semi-axes $a = 2, b = 2, c = 2\sqrt{2}$
 - c) 1-sheet hyperboloid with centre S = [0, 0, 0] and semi-axes a=2, b=2, c=3
 - d) 2-sheet hyperboloid with centre S = [0, 0, 0] and semi-axes a=2, b=5, c=1
 - e) conical surface of evolution with vertex V = [0, 0, 1] and axis in the coordinate axis z
 - f) conical surface of evolution with vertex V = [0, 0, 0] and axis in the coordinate axis x
 - g) paraboloid of revolution with vertex V = [0, 0, 4] and axis in the coordinate axis z
 - h) paraboloid of revolution with vertex V = [1, 0, 0] and axis in the coordinate axis x
 - i) paraboloid of revolution with vertex V = [0, 0, 0] and axis in the coordinate axis y
 - j) cylindrical surface of revolution with basic circle $(x-1)^2 + y^2 = 1$, and with axis and generating lines in direction of coordinate axis z
 - k) cylindrical surface of revolution with basic circle $x^2 + z^2 = 4$, and with axis and generating lines in direction of coordinate axis y
 - l) parabolic cylindrical surface with basic parabola $x = y^2$, and with generating lines in direction of coordinate axis z
 - m) parabolic cylindrical surface with basic parabola $z = 4 y^2$, and with generating lines in direction of coordinate axis x.