Analytic-coordinate geometry of the 3-dimensional Euclidean space

1. Write equation of a plane passing through the point P = [1, 2, 3] perpendicularly to the

vector: a) i

b)
$$\mathbf{n} = (3, 2, -5)$$

c)
$$\mathbf{n} = (1, 1, 0)$$
.

Solution: a) x = 1

b)
$$3x + 2y - 5z + 8 = 0$$
 c) $x + y - 3 = 0$

c)
$$x + y - 3 = 0$$

2. Write equations of coordinate planes.

Solution: Plane xy: z = 0, plane xz: y = 0, plane yz: x = 0

3. Find points in which plane ρ : x - 3y + 2z - 6 = 0 intersects coordinate axes.

Solution: X = [6, 0, 0], Y = [0, -2, 0], Z = [0, 0, 3]

- 4. Show that if in the equation of plane ρ : ax + by + cz + d = 0 holds
 - a) d = 0, then plane ρ is passing through the origin
 - b) a = b = 0, then plane ρ is parallel to the coordinate plane xy
 - c) c = 0, then plane ρ is perpendicular to coordinate plane xy.

Solution: a) ax + by + cz = 0, a.0 + b.0 + c.0 = 0

- b) cz + d = 0, z-coordinates of all points in the plane are constant, z = -d/c
- c) ax + by + d = 0, plane normal vector $\mathbf{n} = (a, b, 0) = a.\mathbf{i} + b.\mathbf{j}$, and $\mathbf{n} \cdot \mathbf{k} = 0$
- 5. Write equations of a plane determined by:
 - a) points A = [0, 2, 2], B = [-4, 0, 3], C = [3, 1, 0]
 - b) points A = [1, 0, 0], B = [0, 0, 1], and perpendicular to the coordinate plane xz
 - c) point M = [1, -1, 2], and parallel to the coordinate plane xz.

Solution: a) x - y + 2z - 2 = 0; x = -4t + 3s, y = 2 - 2t - s, z = 2 + t - 2s, $t, s \in \mathbb{R}$

b)
$$x + z = 1$$
; $x = 1 + t$, $y = s$, $z = -t$, t , $s \in \mathbf{R}$

c)
$$y + 1 = 0$$
; $x = 1 + t$, $y = -1$, $z = 2 + s$, t , $s \in \mathbb{R}$

- 6. Write parametric equations of a line l
 - a) passing through the point P = [-1, 0, 3], and parallel to the coordinate axis y
 - b) determined by points A = [-1, 0, 3], B = [2, 1, -1].

Solution: a) x = -1, y = t, z = 3, $t \in \mathbb{R}$

b)
$$x = -1 + 3t$$
, $y = t$, $z = 3 - 4t$, $t \in \mathbb{R}$

7. Write parametric equation of the coordinate axes.

Solution: axis x: x = t, y = 0, z = 0, $t \in \mathbf{R}$

axis y:
$$x = 0$$
, $y = 0$, $z = 0$, $t \in \mathbf{R}$

axis
$$z$$
: $x = 0$, $y = 0$, $z = t$, $t \in \mathbf{R}$

8. Write parametric equations of a line determined by the general equations

x - y + z - 5 = 0, x + 2y - 7 = 0.

Solution:
$$x = 7 - 2t$$
, $y = t$, $z = -2 + 3t$, $t \in \mathbb{R}$

9. Write general equations of a line determined by the following parametric equations

$$x = 2 - t$$
, $y = 1 + 4t$, $z = -3 + 2t$, $t \in \mathbb{R}$.

Solution:
$$2x + z - 1 = 0$$
, $y - 2z - 7 = 0$

10. Determine mutual position of lines:

a)
$$l_1$$
: $x = -3 + 2t$, $y = 4 - t$, $z = 1 + 3t$, l_2 : $x = -6 + t$, $y = 5 - t$, $z = 1 + 6t$, $t \in \mathbb{R}$

b)
$$l_1$$
: $x = -1 + t$, $y = 18 + 9t$, $z = 10 + 5t$, $t \in \mathbb{R}$, l_2 : $x + y - 2z + 3 = 0$, $3x - 2y + 3z + 9 = 0$

Solution: a) lines are intersecting in the point P = [-7, 6, -5]

- b) lines coincide.
- 11. Find parametric equation of line *l* passing through the point M = [2, 3, -1] perpendicularly to the plane ρ : x + 2y z = 0.

Solution:
$$x = 2 + t$$
, $y = 3 + 2t$, $z = -1 - t$, $t \in \mathbb{R}$

12. Find mutual position of line *l*: x = 2 - t, y = 1 + 3t, z = -3 + 2t, $t \in \mathbb{R}$ and plane ρ : x - 2y + 3z - 1 = 0.

Solution: Line and plane are intersecting in the point P = [12, -29, -23].

13. Find equation of an orthogonal projection of the line

l:
$$x = -3 + 2t$$
, $y = 4 + t$, $z = -1 - 3t$, $t \in \mathbb{R}$ onto the plane ρ : $x - y + 2z - 4 = 0$.

Solution:
$$x + 7y + 3z - 22 = 0$$
, $x - y + 2z - 4 = 0$

14. Find coordinates of point M' symmetric to the point M = [5, 2, -6] with respect to the plane ρ : x - y - 4z - 9 = 0.

Solution:
$$M' = [3, 4, 2]$$

15. Find equation of a line k passing through the point M = [2, 3, 2], perpendicular to the line l: x = -1 - t, y = 2t, z = 3 + 2t, $t \in \mathbb{R}$, and intersecting it.

Solution:
$$x = 2 + 28t$$
, $y = 3 + 25t$, $z = 2 - 11t$, $t \in \mathbb{R}$