Vectors and operations with vectors

1. If $\mathbf{a} = (2, 1, 3)$ and $\mathbf{b} = (1, -2, 0)$ are two vectors, calculate the following $\mathbf{a} + \mathbf{b}$, $|\mathbf{a}|$, $|\mathbf{b}|$, $|\mathbf{a}|$, $|\mathbf{b}|$, $|\mathbf{a}|$, $|\mathbf{b}|$, $|\mathbf{a}|$, $|\mathbf{b}|$,

Solution: $\mathbf{a} + \mathbf{b} = (3, -1, 3), \ |\mathbf{a}| = \sqrt{14}, |\mathbf{b}| = \sqrt{5}, \ \mathbf{a} \cdot \mathbf{b} = 0 \ (\mathbf{a} \perp \mathbf{b}), \ 3\mathbf{a} - \mathbf{b} = (5, 5, 9), \ \mathbf{a} \times \mathbf{b} = (6, 3, -5).$

- 2. Find out if vectors $\mathbf{a} = \mathbf{i} + \mathbf{j}$, $\mathbf{b} = \mathbf{j} + \mathbf{k}$, $\mathbf{c} = 2\mathbf{k}$ are linearly independent. **Solution:** Vectors are linearly independent, $[\mathbf{a}, \mathbf{b}, \mathbf{c}] = 2$.
- 3. Find coordinates of vector \mathbf{w} perpendicular to vectors $\mathbf{a} = (1, 0, 1)$ and $\mathbf{b} = (-1, 1, 0)$, and calculate its length.

Solution: $\mathbf{w} = (-1, -1, 1), |\mathbf{w}| = \sqrt{3}$.

- 4. Calculate area of a parallelogram determined by vectors $\mathbf{a} = (2, 1, 2), \mathbf{b} = (0, 4, 0).$ Solution: $P = 8\sqrt{2}$.
- 5. Find angle formed by vectors: a) $\mathbf{a} = (2, 0, 0)$, $\mathbf{b} = (0, 3, 4)$ b) $\mathbf{a} = (1, 1, 1)$, $\mathbf{b} = (0, 0, 3)$ c) $\mathbf{a} = (1, 1, 0)$, $\mathbf{b} = (0, 1, 1)$ d) $\mathbf{a} = (2, 0, 2)$, $\mathbf{b} = (1, 1, 0)$ Solution: a) $\varphi = \frac{\pi}{2}$ b) $\varphi = 0.96$ rd c) $\varphi = \frac{\pi}{4}$ d) $\varphi = \frac{\pi}{3}$
- 6. Calculate volume of parallelepiped determined by vectors $\mathbf{a} = (2,4,0)$, $\mathbf{b} = (1,1,5)$, $\mathbf{c} = (-2,3,2)$. **Solution:** V = 74
- 7. Are vectors $\mathbf{a} = (-1, 2, 4)$, $\mathbf{b} = (3, 0, 2)$, $\mathbf{c} = (-2, 1, 4)$ coplanar? Solution: Vectors are not coplanar, $[\mathbf{a}, \mathbf{b}, \mathbf{c}] = -18$
- 8. Find coordinates of vector \mathbf{w} that is perpendicular to vector $\mathbf{a} = (2, 3, 4)$ and collinear with vector $\mathbf{b} = (1, -2, ?)$, while its legth is $\sqrt{150}$.

 Solution: $\mathbf{w} = (5, -10, 5)$
- 9. Evaluate area of a parallelogram determined by vectors $\mathbf{a} = (2, 0, 2)$, $\mathbf{b} = (2, 2, 0)$ using the formula that includes the angle φ formed by the two vectors.

Solution: $P = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \sin \varphi = 4\sqrt{3}$

10. Determine the position of vectors $\mathbf{a} = (7, -2, 1)$, $\mathbf{b} = (2, 5, -4)$, $\mathbf{c} = (8, -19, 14)$. **Solution:** $\mathbf{a} \perp \mathbf{b}$, $\mathbf{c} = 2\mathbf{a} - 3\mathbf{b}$