Vector a	$a = \{ *, *, * \}$
----------	---------------------

Point A
$$A = \{*, *, *\}$$

Parametric representation of line through two points A, B

$$p = A + (B - A) * t$$

View of line

ParametricPlot3D[p,
$$\{t, *, *5\}$$
, AxesLabel $\rightarrow \{"x", "y", "z"\}$]

Parametric representation of plane through point A, with direction vectors a, b

$$\rho = A + a * t + b * s$$

View of plane

ParametricPlot3D[
$$\rho$$
, {t, *, *}, {s, *, *}, AxesLabel \rightarrow {"x", "y", "z"}]

View of plane in the first octant

ContourPlot3D[equation,
$$\{x, 0, *\}, \{y, 0, *\}, \{z, 0, *\}, AxesLabel \rightarrow \{"x", "y", "z"\}$$
]

View of a surface

ContourPlot3D[equation,
$$\{x, *, *\}, \{y, *, *\}, \{z, *, *\}, AxesLabel \rightarrow \{"x", "y", "z"\}$$
]

Problems

- 1. Find norm of vector $\mathbf{a} = (2, 1, -3)$, scalar and vector (cross) product of vectors \mathbf{a} and $\mathbf{b} = (3, -3, 1)$, and mixed product of vectors \mathbf{a} , \mathbf{b} , and $\mathbf{c} = (4, 2, -6)$.
- 2. Find equations and plot:
 - a. line p passing through point A = [1, 4, 2] in direction $\mathbf{a} = (2, 1, -3)$,
 - b. line with equations 3x + 6y + 4z = 9, x y z = 0
 - c. plane ρ determined by point A = [1, 4, 2] and line r with parametric equations x = 1 + t, y = 4 + t, z = 0.
- 3. Investigate mutual position of
 - a. line p and plane ρ from problem 2
 - b. planes α : 2x 3y + 4z = 3, β : x 2y 3z = 1, χ : 4x + 2y + z = 0.
- 4. Plot surfaces with equations

a.
$$x^2 + y^2 + z^2 = 1$$

b. $\frac{x^2}{3} + \frac{y^2}{9} + \frac{z^2}{16} = 1$

c.
$$\frac{x^2}{3} + \frac{y^2}{9} - \frac{z^2}{16} = 1$$
 d. $\frac{x^2}{2} + \frac{y^2}{9} - \frac{z^2}{2} = -1$

e.
$$-x^2 + y^2 + z^2 = -1$$
.
f. $\frac{x^2}{3} - \frac{y^2}{9} + \frac{z^2}{16} = 0$

g.
$$\frac{x^2}{3} + \frac{y^2}{9} = -z$$
 h. $\frac{x^2}{2} - \frac{y^2}{3} = z$

i.
$$x^2 + z^2 = 4$$
 j. $x^2 - y^2 = 1$

k.
$$y^2 + 2z = 0$$
 1. $(z-2)^2 = 2(x-1)$