
 

 

 

Double integrals 



Let  f  be function with two variables defined on region M ⊂ E2 

M = {[x, y]  E2: a  x  b, c  y  d} =  

     = a, b  c, d - 2D interval 

f (x, y)  0 

graph is a surface patch G(f) in E3  over M. 

Solid in E3 is bounded by planes  

z = 0, x = a, x = b, y = c, y = d 

and surface patch with equation z = f (x, y). 

T = {[x, y, z]  E3 : [x, y]  M, 0  z  f (x, y)} 

How can be calculated the volume of this solid 

V = ? 



division of interval a, b        a = x0 < x1 < ... < xn-1 < xn = b 

division of interval c, d  -     c = y0 < y1 < ... < ym-1 < ym= d 

division of region M      Mij =  xi-1, xi   yj-1, yj, i = 1,..., n, j = 1,..., m 

division of solid T onto k = m.nl partial ,,prisms” 

Taking arbitrary points [i , j]  Mij function f value is f(i , j)  

and we can compute sum of the values  f(i , j).P(Mij),  

for area of partial rectangular P(Mij)=xiyj 

Integral sum of function  f(x, y)  on a rectangular region M is 
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If there exists for an arbitrary choice of points [i, j]  Mij the same 

proper limit 
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then this is called double integral of function  f  on region M  
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Function  f  is said to be integrable on region M. 

 

Geometric interpretation of double integral of function f (x, y)  0 

on region M is the volume of solid T. 



Sufficient condition for integrability 

Let function  f  with two variables be bounded on region  M  

and let there exist a finite number of points of discontinuity, 

then function  f  is integrable on M. 

 

Consequence 

Any function  f(x, y)  that is continuous on region  M  is integrable 

on this region. 

 

 

 



FUBINI theorem 

Let function  f(x, y)  be continuous on region  M = a, b  c, d, then 
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Properties of double integrals 

1. Linearity 

Let functions  f1,  f2, ...,  fk  be integrable on region M 

and  c1,  c2, ...,  ck  are real numbers, then 
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2. Aditivity 

Let function  f  be integrable on region M that is a union of 

a finite number of measurable regions Mi  with no common 

interior points. Then 
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3. Monotonicity 

Let functions  f,  g  be integrable on region M  

and let X =[x, y] M  holds  f(x, y)   g(x, y), then 
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4. Let function  f  be integrable on a measurable region M  

and  f(x, y) ≧ 0  for all  X=[x, y] M, then 
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5. Let function  f  be integrable on a measurable region  M, 

then also function   f   is integrable on M and 
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Set  M = {[x, y]  E2: a  x  b, g(x)  y  h(x)}  

for  a, b  R, a  b,  

Continuous functions  g and  h  defined on 

interval  a, b,  while for all  x  a, b holds 

g(x)   h(x),  

is called regular region of type x  

 



Set  M = {[x, y]  E2: g(y)  x  h(y), c  y  d }, for c, d  R, c   d, 

functions  g and h  continuous on interval c, d, while for all   

y  c, d  holds  g(y)    h(y), is called regular region of type y. 

 

Double integral of function  f  with two variables on a regular region 

M can be defined similarly as on region  a, b  c, d. 

 

Let function  f  be integrable on regular region M, then double 

integral exists 
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All properties of double integral on region  a, b  c, d  are valid 

analogously also for double integral on regular region M, or on set, 

which is a union of finite number of elementary regions. 

1- Linearity 

2- Aditivity 

3- Monotonicity 

4- Positivity 

5-  
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FUBINI theorem 

Let function  f(x, y)  be continuous on regular region  

M = {[x, y]  E2: a  x  b, g(x)  y  h(x)} of type x, then 
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For function  f(x, y)  continuous on regular region  

M = {[x, y]  E2: g(y)  x  h(y), c  y  d } holds 
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Triple integrals 



Let function  f(x, y, z)  with three variables be defined on a three-

dimensional region  M ⊂ E3  

          M = {[x, y, z] ∈ E3: a ≦ x ≦ b, c ≦ y ≦ d, e ≦ z ≦ h}    

          M = 〈a, b〉 × 〈c, d 〉 × 〈e, h〉 

with volume V(M) = (b – a)(d - c)(h - e) 

Dividing intervals  〈a, b〉, 〈c, d〉, 〈 e, h〉 and applying similar steps as 

for definition of double integral of functions with two variables, the 

integral sum of function  f(x, y, z) on set M can be determined  
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Let function  f  be defined on a bounded region  M. If for an 

arbitrary choice of points  [i, j, k]  Mijk  there exists a proper 

limit 
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it is called the triple integral of function  f  on region  M  and 

denoted 
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Function  f  is said to be integrable on region  M. 

Sufficient condition for integrability of function  f  is to be bounded 

on set M.  Any function continuous on region M is integrable on M. 



FUBINI theorem 

For any function  f(x, y, z)  that is continuous on region 

 M = a, b  c, d  e, h holds 
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Regular region with respect to plane  xy  

Let functions  z1(x, y)  z2(x, y) 

be continuous and bounded on regular region 

M = {[x, y]  E2: a  x  b, g1(x)  y  g2(x)}  

or  

M´ = {[x, y]  E2: h1(y)  x  h2(y), c  y  d } 
 

Set of points 

D = {[x, y, z]  E3: [x, y]  M, z1(x, y)  z  z2(x, y)}  

D´ = {[x, y, z]  E3: [x, y]  M´, z1(x, y)  z  z2(x, y)} 

is a regular region in E3 with respect to the plane  xy. 



FUBINI theorem 

For function  f(x, y, z)  continuous on a regular region D holds 
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If function  f(x, y, z)  is continuous on an regular region D´, then 
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All properties of double integral on region  a, b  c, d, or on a 

regular region M, analogously hold also for a triple integral on 

region  a, b  c, d  e, h, or on a regular region  D, or on set, 

which is a union of a finite number of regular regions. 

1- Linearity 

2- Aditivity 

3- Monotonicity 

4- Positivity 
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