Scalar and vector fields

Let $\Omega \subset \mathbf{E}^3$ be a space region – open or closed connected subset of space \mathbf{E}^3 determined by Cartesian coordinates, ordered triples of real numbers $X = [x, y, z] \in \mathbf{R}^3$.

Let f be a scalar function, such that any point $X \in \Omega$ is attached a real number. Ordered pair (Ω, f) is called a stationary scalar field, while function f is called the potential of this field.

$$f(X) = f(x, y, z) = h, h \in H(f) \subset \mathbf{R}$$

To illustrate "graph" of function f we would need 4-dimensional space E^4 .

Let function f(X) be continuous on region Ω and let it have continuous partial derivatives with respect to all variables, which are not simultaneously all equal to zero. Set of points in the region Ω , at which the potencial has the same value $C \in H(f)$, forms a surface in the space E^3 with equation satisfied by coordinates of points: f(x, y, z) = C.

Surfaces determined by equations

$$f(x, y, z) = C_i, C_i \in H(f)$$

are called equipotential (level) surfaces of the scalar field (Ω, f) .

These are e.g. isotermic surfaces in the termostatic field, or isobaric surfaces in the field of the astmospheric pressure.

Equipotential surfaces of the electrostatic field generated by a given point power source q are concentric spheres with centre at the point q.

System of all equipotential surfaces of a scalar field (Ω, f) corresponding to all values of potential fill in the entire region Ω .

Exactly one equipotential surface is passing through each point in the region, and no two equipotential surfaces for $C_i \neq C_j$ have a common point.

Space scalar field, graph of function of three variables, three-dimensional manifold (solid) in E^4 , can be visualised by equipotential surfaces in E^3

$$F(x, y, z) = x^3 + y^2 - z^2$$

$$F(x, y, z) = \sin(x + y^2) + z$$

Plane scalar field U(x, y) = C

Equipotential curves = level curves of the graph of function of two variables $U(x, y) = \sin(x + y^2)$

Derivative in a given direction – directional derivative

Function f(x, y, z) differentiable at the point X_0 has at this point derivative in any direction \mathbf{s} and the following holds

$$f'_{s}(X_0) = f'_{x}(X_0)\cos \alpha + f'_{y}(X_0)\cos \beta + f'_{z}(X_0)\cos \gamma$$

where $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are direction cosines of vector s.

If
$$\mathbf{s} = \mathbf{i}$$
, then $\alpha = 0$, $\beta = \pi/2$, a $\gamma = \pi/2$, $f'_{\mathbf{i}}(X_0) = f'_{x}(X_0)$

If
$$\mathbf{s} = \mathbf{j}$$
, then $\alpha = \pi/2$, $\beta = 0$, a $\gamma = \pi/2$, $f'_{\mathbf{j}}(X_0) = f'_{\mathbf{y}}(X_0)$

If
$$s = k$$
, then $\alpha = \pi/2$, $\beta = \pi/2$, a $\gamma = 0$, $f'_{k}(X_{0}) = f'_{z}(X_{0})$

Partial derivatives of function f at the point X_0 with respect to variables x, y, z are derivatives of function f at the point X_0 in direction of unit vectors \mathbf{i} , \mathbf{j} , \mathbf{k} that are direction vectors of coordinate axes x, y and z. Derivative of function f(x, y, z) in direction \mathbf{s} is scalar product of unit vector

$$\mathbf{s}_0 = \cos \alpha \,\mathbf{i} + \cos \beta \,\mathbf{j} + \cos \gamma \,\mathbf{k} \text{ and vector } f'_x(X_0)\mathbf{i} + f'_y(X_0)\mathbf{j} + f'_z(X_0)\mathbf{k}$$
$$f'_s(X_0) = (f'_x(X_0), f'_y(X_0), f'_z(X_0)).(\cos \alpha, \cos \beta, \cos \gamma)$$

Gradient of a scalar function f(x, y, z) at the point X_0

grad
$$f(X_0) = f'_x(X_0)\mathbf{i} + f'_y(X_0)\mathbf{j} + f'_z(X_0)\mathbf{k}$$

is such vector, in direction of which the derivative of function f at the point X_0 is maximal and equals to the norm of this vector $[f'_s(X_0)]_{max} = |\operatorname{grad} f(X_0)|$

$$f'_{\mathbf{s}}(X_0) = |\operatorname{grad} f(X_0)| \cos \varphi$$

where φ is angle formed by vectors grad $f(X_0)$ and s.

If grad $f(X_0) = \mathbf{0}$, derivative of function f at the point X_0 in any direction \mathbf{s} vanishes, $f'_{\mathbf{s}}(X_0) = 0$ for any vector \mathbf{s} .

Physical meaning of a gradient at a point

Values of function f(x, y, z) are changing most rapidly (are increasing) in the direction of vector that is the function gradient, i.e. in direction

grad
$$f(X_0) = (f'_x(X_0), f'_y(X_0), f'_z(X_0)).$$

Geometric meaning of a gradient at a point

Let function f be differentiable at the point X_0 and let grad $f(X_0) \neq 0$,

$$[f'_x(X_0)]^2 + [f'_y(X_0)]^2 + [f'_z(X_0)]^2 \neq 0$$

then a surface determined by equation

$$f'_{x}(x_0)(x - x_0) + f'_{y}(x_0)(y - y_0) + f'_{z}(x_0)(z - z_0) = 0$$

is tangent to the equipotential surface of the scalar field (Ω, f) , passing through the point $X_0 = [x_0, y_0, z_0]$.

Vector
$$\operatorname{grad} f(x_0, y_0, z_0) = f'_x(X_0)\mathbf{i} + f'_y(X_0)\mathbf{j} + f'_z(X_0)\mathbf{k}$$

is a normal vector to the tangent plane to the equipotential surface at the given tangent point $X_0 = [x_0, y_0, z_0]$.

Derivative of function f in direction \mathbf{s} at the point X_0 equals to the norm of an orthographic projection of vector grad $f(X_0)$ to the vector \mathbf{s} .

Let (Ω, f) be a scalar field, and let function f be differentiable at all points $X \in \Omega$. Vector function $\mathbf{F} = \operatorname{grad} f$ defined on region Ω , by which any point $X \in \Omega$ is attached a vector $\operatorname{grad} f(X)$ is called gradient of function f

$$\mathbf{F} = \operatorname{grad} f = f'_{x} \mathbf{i} + f'_{y} \mathbf{j} + f'_{z} \mathbf{k}$$

or

$$\mathbf{F} = \text{grad } f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

Vector function $\mathbf{F} = \operatorname{grad} f$ is called gradient of the scalar field (Ω, f)

$$\mathbf{F} = \text{grad } f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$$

To any scalar field (Ω, f) correspondes a unique vector field

 (Ω, \mathbf{F}) , where $\mathbf{F} = \operatorname{grad} f$, which is the vector field of gradients of a scalar field (Ω, f) .

Gradient of a scalar field is a differential characteristic of this scalar field. Properties of gradient of a scalar function

1.
$$\operatorname{grad}(f_1 + f_2 + ... + f_n) = \operatorname{grad} f_1 + \operatorname{grad} f_2 + ... + \operatorname{grad} f_n$$

2.
$$\operatorname{grad}(f g) = f \operatorname{grad}(g) + g \operatorname{grad}(f)$$
 $\operatorname{grad}(f(g)) = f'(g) \operatorname{grad}(g)$

$$\left| \operatorname{grad} f \right| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 + \left(\frac{\partial f}{\partial z} \right)^2}$$

Symbolic vector $\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$ is called

the Hamiltonian differential operator ∇ = nabla

grad
$$f = \nabla f = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right)f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

Derivative of function in direction s equals

$$f_{\mathbf{s}}'(X) = \nabla f \cdot \mathbf{s}_0, \mathbf{s}_0 = \frac{\mathbf{s}}{|\mathbf{s}|}$$

Let **F** be a vector function, by which any point $X = (x, y, z) \in \Omega$ is attached a vector in the space E^3

$$\mathbf{F}(X) = \mathbf{F}(x, y, z) = f_1(x, y, z)\mathbf{i} + f_2(x, y, z)\mathbf{j} + f_3(x, y, z)\mathbf{k}$$

An ordered pair (Ω, \mathbf{F}) is said to be a stationary vector field. Hodograph of function \mathbf{F} is a manifold in the 3-dimensional space \mathbf{E}^3 .

A good view into the vector field can be given by vector curves.

Vector curve k (flow curve - flow) of the vector field (Ω, \mathbf{F}) is a regular curve in the region Ω determined parametrically as

$$\mathbf{r} = \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}, t \in \mathbf{R}$$

and its tangent vector $\mathbf{r}'(t) = x'(t)\mathbf{i} + y'(t)\mathbf{j} + z'(t)\mathbf{k}$

at the point $X(t) = [x(t), y(t), z(t)], t \in \mathbf{R}$ is collinear to vector $\mathbf{F}(X(t))$, as

$$\frac{x'(t)}{f_1(x, y, z)} = \frac{y'(t)}{f_2(x, y, z)} = \frac{z'(t)}{f_3(x, y, z)}$$

Equations

$$\frac{x'(t)}{f_1(x,y,z)} = \frac{y'(t)}{f_2(x,y,z)}, \quad \frac{x'(t)}{f_1(x,y,z)} = \frac{z'(t)}{f_3(x,y,z)}, \quad \frac{y'(t)}{f_2(x,y,z)} = \frac{z'(t)}{f_3(x,y,z)}$$

represent a system of non-linear differential equation of order 1.

Solution of this system is a triple of functions x(t), y(t), z(t), $t \in \mathbb{R}$ determining system of vector curves of the respective vector field.

Exactly one vector curve of the vector field (Ω, \mathbf{F}) is passing through any point $X_0 \in \Omega$, at which $\mathbf{F}(X_0) \neq \mathbf{0}$.

Differential characteristics of a vector field

Divergence of a vector field (vector function) F at the point is scalar

div
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right) \cdot (f_1\mathbf{i} + f_2\mathbf{j} + f_3\mathbf{k}) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

Vector field is said to be solenoidal, if div $\mathbf{F} = 0$.

Field with non-zero divergence is rotational field, in which there exists at least one flow, therefore

div
$$\mathbf{F}(X) \neq 0$$
 at at least one point $X = [x, y, z] \in \Omega$.

Properties of divergence

$$\operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div}\mathbf{F} + \operatorname{div}\mathbf{G}$$

$$\operatorname{div}(f\mathbf{F}) = f\operatorname{div}\mathbf{F} + \mathbf{F} \cdot \operatorname{grad} f$$

Curl of a vector field (vector function F) at the point is a vector

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \left(\frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k} \right) \times (f_1 \mathbf{i} + f_2 \mathbf{j} + f_3 \mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix} =$$

$$= \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}, \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right)$$

Properties: $\operatorname{curl}(\mathbf{F} + \mathbf{G}) = \operatorname{curl} \mathbf{F} + \operatorname{curl} \mathbf{G}$, $\operatorname{curl}(f\mathbf{F}) = f \operatorname{curl} \mathbf{F} - \mathbf{F} \times \operatorname{grad} f$

A vector field for which the curl vanishes is said to be an irrotational field, or conservative field.

Rotational field contains whirls at those points, at which curl is non-zero, and it determines the direction of a flow at this point.

Vector field, which is a gradient of a scalar field f(x, y, z) is irrotational, and any irrotational field can be represented as a gradient of a scalar field.

Laplace operator Δ

Scalar product of nabla opertor ∇ with itself is the Laplace operator (Laplacian) Δ

$$\Delta = \nabla \cdot \nabla = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$
, if $\Delta f = 0$, function is said to be harmonic

$$\Delta \mathbf{F} = (\Delta f_1, \Delta f_2, \Delta f_3) = (\frac{\partial^2 f_1}{\partial x^2} + \frac{\partial^2 f_1}{\partial y^2} + \frac{\partial^2 f_1}{\partial z^2}, \frac{\partial^2 f_2}{\partial x^2} + \frac{\partial^2 f_2}{\partial y^2} + \frac{\partial^2 f_2}{\partial z^2}, \frac{\partial^2 f_3}{\partial z^2} + \frac{\partial^2 f_3}{\partial z^2} + \frac{\partial^2 f_3}{\partial z^2})$$

Properties of Laplace operator

$$\Delta(f+g) = \Delta f + \Delta g, \quad \Delta(fg) = f \Delta g + g \Delta f + 2\nabla f \cdot \nabla g$$

$$\Delta \nabla f = \nabla (\Delta f)$$

$$\Delta(\mathbf{F} + \mathbf{G}) = \Delta\mathbf{F} + \Delta\mathbf{G}, \qquad \Delta \text{ curl } \mathbf{F} = \text{curl } \Delta\mathbf{F}$$

Formulas for calculations with differential operators

$$\nabla(f g) = \operatorname{grad}(f g) = f \operatorname{grad} g + g \operatorname{grad} f$$
 vector

$$\nabla(f \mathbf{F}) = \operatorname{div}(f \mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \operatorname{grad} f$$
 scalar

$$\nabla \times (f\mathbf{F}) = \text{curl } (f\mathbf{F}) = f \text{curl } \mathbf{F} - \mathbf{F} \times \text{grad } f$$
 vector

$$\nabla(\mathbf{F}.\mathbf{G}) = \text{grad}(\mathbf{F}.\mathbf{G}) = \mathbf{F} \times \text{curl } \mathbf{G} + \mathbf{G} \times \text{curl } \mathbf{F} + \mathbf{G} \times \mathbf{G} \times \mathbf{G} = \mathbf{G} \times \mathbf{G} \times \mathbf{G} + \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{G} + \mathbf{G} + \mathbf{G} \times \mathbf{G} + \mathbf{$$

$$+\left(f_1\frac{\partial\mathbf{G}}{\partial x} + f_2\frac{\partial\mathbf{G}}{\partial y} + f_3\frac{\partial\mathbf{G}}{\partial z}\right) + \left(g_1\frac{\partial\mathbf{F}}{\partial x} + g_2\frac{\partial\mathbf{F}}{\partial y} + g_3\frac{\partial\mathbf{F}}{\partial z}\right) \text{vector}$$

$$\nabla (\mathbf{F} \times \mathbf{G}) = \operatorname{div} (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \operatorname{curl} \mathbf{F} - \mathbf{F} \times \operatorname{curl} \mathbf{G}$$
 scalar

$$\nabla \times (\mathbf{F} \times \mathbf{G}) = \text{curl } (\mathbf{F} \times \mathbf{G}) = \mathbf{F} \text{ div } \mathbf{G} - \mathbf{G} \text{ div } \mathbf{F} +$$

$$+\left(g_1\frac{\partial \mathbf{F}}{\partial x} + g_2\frac{\partial \mathbf{F}}{\partial y} + g_3\frac{\partial \mathbf{F}}{\partial z}\right) - \left(f_1\frac{\partial \mathbf{G}}{\partial x} + f_2\frac{\partial \mathbf{G}}{\partial y} + f_3\frac{\partial \mathbf{G}}{\partial z}\right) \text{ vector}$$

$$\nabla^2 f = \nabla \nabla f = \text{div grad } f = \text{div } \nabla f = \Delta f \qquad \text{scalar}$$

$$\nabla \times (\nabla f) = \operatorname{curl} \operatorname{grad} f = \operatorname{curl} \nabla f = \mathbf{0} \qquad \text{vector}$$

$$\nabla(\nabla \mathbf{F}) = \text{grad div } \mathbf{F} = \text{curl curl } \mathbf{F} + \Delta \mathbf{F}$$
 vector

$$\nabla(\nabla \times \mathbf{F}) = \text{div curl } \mathbf{F} = 0$$
 scalar

Basic relations

$$\nabla f = \operatorname{grad} f$$
 vector (direction of increase-decrease of function values)

$$\nabla \cdot \mathbf{F} = \text{div } \mathbf{F}$$
 scalar (existence of flows)

$$\nabla \times \mathbf{F} = \text{curl } \mathbf{F}$$
 vector (direction and magnitude of whirls)

$$\nabla^2 f = \Delta f$$
 scalar (divergence of gradient, gradient change, curvature of the scalar field)

$$\nabla^2 \mathbf{F} = \Delta \mathbf{F}$$
 vector (direction and magnitude of curvature of vector field)