## **Integration of vector functions**

## Taylor theorem

Let vector function  $\mathbf{r}(t)$  has continuous derivatives up to oder n+1 (it is differentiable) on a closed interval  $J = \langle t_0, t_0 + \Delta t \rangle$ .

Then there exists vector function  $\alpha$  such that

$$\lim_{\Delta t \to 0} \alpha(\Delta t) = \mathbf{0}$$

and it holds

$$\mathbf{r}(t_0 + \Delta t) = \mathbf{r}(t_0) + \frac{\mathbf{r}'(t_0)}{1!} \Delta t + \frac{\mathbf{r}''(t_0)}{2!} \Delta t^2 + \dots + \frac{\mathbf{r}^{(n)}(t_0)}{n!} \Delta t^n + \mathbf{R}_{n+1}$$

$$\mathbf{R}_{n+1} = \left[\frac{\mathbf{r}^{(n+1)}(t_0)}{(n+1)!} + \boldsymbol{\alpha}(\Delta t)\right] \Delta t^{n+1}$$

This representation of function is called Taylor approximation of function of order n, where  $\mathbf{R}_{n+1}$  is called error.

## **Integral of vector function**

Vector function  $\mathbf{r}(t) = (f_1(t), f_2(t), ..., f_n(t))$ is integrable on interval  $\langle \alpha, \beta \rangle$  iff, all its components, scalar coordinate functions  $f_1(t), f_2(t), ..., f_n(t)$  are integrable on interval  $\langle \alpha, \beta \rangle$ , and it holds

$$\int_{\alpha}^{\beta} \mathbf{r}(t)dt = \left(\int_{\alpha}^{\beta} f_1(t)dt, \int_{\alpha}^{\beta} f_2(t)dt, \dots, \int_{\alpha}^{\beta} f_n(t)dt\right)$$

Definite integral of vector function is vector from the space  $V^n(\mathbf{R})$ .

Vector function  $\mathbf{R}(t) = (F_1(t), F_2(t), ..., F_n(t))$ 

defined on an open interval  $J = \langle \alpha, \beta \rangle$  is called antiderivative, or a primitive function of the vector function  $\mathbf{r}(t)$  defined on the same interval J, if for any  $t \in J$  holds  $\mathbf{R}'(t) = \mathbf{r}(t)$ .

Let functions  $F_1(t)$ ,  $F_2(t)$ , ...,  $F_n(t)$  are antiderivatives of respective scalar coordinate functions  $f_1(t)$ ,  $f_2(t)$ , ...,  $f_n(t)$ .

Vector function  $\mathbf{R}(t)$  is said to be indefinite integral of vector function  $\mathbf{r}(t)$ 

$$\int \mathbf{r}(t)dt = (\int f_1(t)dt, \int f_2(t)dt, \dots, \int f_n(t)dt)$$

Let vector function  $\mathbf{r}(t) = (f_1(t), f_2(t), ..., f_n(t))$ be integrable on interval  $J = \langle \alpha, \beta \rangle$ and let vector function  $\mathbf{R}(t) = (F_1(t), F_2(t), ..., F_n(t))$ continuous on interval J be antiderivative of vector function  $\mathbf{r}(t)$  on J. Then it holds

$$\int_{\alpha}^{\beta} \mathbf{r}(t)dt = \mathbf{R}(\beta) - \mathbf{R}(\alpha) =$$

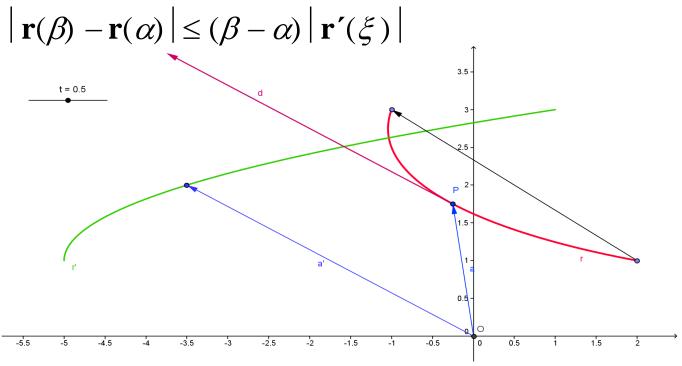
$$= (F_1(\alpha) - F_1(\beta), F_2(\alpha) - F_2(\beta), \dots, F_n(\alpha) - F_n(\beta))$$

Newton-Leibnitz formula for vector functions

Let vector function **r** has the following properties:

- 1. it is continuous on interval  $\langle \alpha, \beta \rangle$
- 2. it is differentiable at all points from interval  $(\alpha, \beta)$ .

Then there exists at least one point  $\xi$  in the interval  $\langle \alpha, \beta \rangle$  such that



Mean value theorem for vector function on closed interval