
 

 

 

 

Integration of vector functions 



Taylor theorem 
 

Let vector function r(t) has continuous derivatives up to oder n + 1 (it is 

differentiable) on a closed interval J = t0 , t0 + t  . 

Then there exists vector function  such that 
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and it holds 
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This representation of function is called Taylor approximation of function 

of order n, where Rn+1 is called error. 



 

Integral of vector function 

 

Vector function  r(t) = (f1(t), f2(t), …, fn(t))  

is integrable on interval ,   iff,  

all its components,  scalar coordinate functions f1(t), f2(t), …, fn(t) are 

integrable on interval , , and it holds 
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Definite integral of vector function is vector from the space V 
n
(R). 



Vector function  R(t) = (F1(t), F2(t), …, Fn(t))  

defined on an open interval J = ,   is called  antiderivative, or a 

primitive function of the vector function r(t) defined on the same interval J, 

if for any t  J  holds  R´(t) = r(t). 

 

Let functions F1(t), F2(t), …, Fn(t) are antiderivatives of respective scalar 

coordinate functions  f1(t), f2(t), …, fn(t). 
 

Vector function R(t) is said to be indefinite integral of vector function r(t)  
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Let vector function  r(t) = (f1(t), f2(t), …, fn(t))  

be integrable on interval  J = ,   

and let vector function  R(t) = (F1(t), F2(t), …, Fn(t))  

continuous on interval  J  be antiderivative of vector function r(t) on J. 

Then it holds 
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Newton-Leibnitz formula for vector functions 

 



Let vector function r has the following properties: 

1.  it is continuous on interval ,  

2. it is differentiable at all points from interval ( , ). 
 

Then there exists at least one point  in the interval ,  such that 
 

r( )  r( )  (   ) r´(  )  

  
Mean value theorem for vector function on closed interval 


