Vector functions

Vector space

Set of all vectors $\mathbf{a} = (a_1, a_2, ..., a_n)$, with components that are real numbers $a_i \in \mathbf{R}$ is called a vector space over real numbers and it is denoted $\mathbf{V}^n(\mathbf{R})$, if the following properties hold:

- 1. for any real number k and any vector $\mathbf{a} \in V^n(\mathbf{R})$ holds $k.\mathbf{a} \in V^n(\mathbf{R})$
- 2. for any 2 vectors $\mathbf{a}, \mathbf{b} \in V^n(\mathbf{R})$ holds $\mathbf{c} = \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}, \mathbf{c} \in V^n(\mathbf{R})$
- 3. for any 2 vectors $\mathbf{a}, \mathbf{b} \in V^n(\mathbf{R})$ and 2 real numbers k, l holds

$$k(\mathbf{a} + \mathbf{b}) = k.\mathbf{a} + k.\mathbf{b}, (k + l).\mathbf{a} = k.\mathbf{a} + l.\mathbf{a}$$

$$(k.l).\mathbf{a} = k.(l.\mathbf{a}), 1. \mathbf{a} = \mathbf{a}, \mathbf{0} + \mathbf{a} = \mathbf{a} + \mathbf{0} = \mathbf{a}$$

We define additional operations in the vector space $V^n(\mathbf{R})$:

- 4. scalar product of vectors $\mathbf{a.b} = \sum_{i=1}^{n} a_i . b_i$
- 5. vector product of two vectors, exclusively for $V^3(\mathbf{R})$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, -\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{pmatrix}$$

6. mixed scalar product of three vectors, exclusively for $V^3(\mathbf{R})$

$$[\mathbf{a}, \mathbf{b}, \mathbf{c}] = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

7. norm – size (length) of vectors $\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$

Let M be an interval in real numbers and $V^n(R)$ be n-dimensional vector space over real numbers R.

Mapping **f** from **R** to vector space $V^n(\mathbf{R})$, in which any real number $t \in M$ is attached a vector from space $V^n(\mathbf{R})$

$$\mathbf{f}: M \to V^n(\mathbf{R}), \ t \to \mathbf{f}(t)$$

$$\mathbf{f}(t) = (f_1(t), f_2(t), ..., f_n(t))$$

where $f_1(t)$, $f_2(t)$, ..., $f_n(t)$ are real functions (scalar coordinate functions) of one real variable t defined on the same interval M, will be called vector function of one real variable t.

Interval M is called domain of definition of vector function \mathbf{f} - $D(\mathbf{f})$.

Image of point $t_0 \in M$ in mapping \mathbf{f} is vector, related to number t_0 , and denoted

$$\mathbf{f}(t_0) = (f_1(t_0), f_2(t_0), ..., f_n(t_0))$$

which is called the value of function \mathbf{f} at the point t_0 . Range of function \mathbf{f} is set

$$H(\mathbf{f}) = {\mathbf{a} \in V^n(R); \exists t \in D(\mathbf{f}), \mathbf{a} = \mathbf{f}(t)}$$

For n = 1 we receive function with one real variable t, $\mathbf{f}(t) = (f_1(t))$.

For n = 2 we receive function $\mathbf{f}(t) = (f_1(t), f_2(t))$ of real variable t, which can be denoted also as

$$\mathbf{f}(t) = (x(t), y(t)) = x(t)\mathbf{i} + y(t)\mathbf{j}$$

For n = 3 function is $\mathbf{f}(t) = (f_1(t), f_2(t), f_3(t))$ that can be also denoted

$$\mathbf{f}(t) = (x(t), y(t), z(t)) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

Vector function \mathbf{f} is uniquelly determined by its domain of definition $D(\mathbf{f}) \subset \mathbf{R}$ and by formulas (scalar coordinate functions), according to which any point $t \in D(\mathbf{f})$ can be attached just one vector $\mathbf{f}(t)$ called value of the vector function.

Function can be represented in different ways:

by words

by table of function values

by graph

analytically – by means of mathematical formula or equation

Let **f** be a vector function of one variable *t* defined on interval *M* in real numbers.

Graph (hodograph) of function f is set G(f) of all such points

$$X = [x_1, x_2, ..., x_n] \in \mathbf{E}^n$$
, for which:

1.
$$\mathbf{OX} = \mathbf{a} = (x_1, x_2, ..., x_n) \in V_n$$

2.
$$\exists t \in \mathbf{R}; \mathbf{a} = \mathbf{f}(t) = (f_1(t), f_2(t), ..., f_n(t))$$

Geometrically we can naturally interpret only graphs of vector functions for n = 1, 2 and 3.

Graph of vector function $\mathbf{f}(t) = (x(t), y(t))$ is a plane curve.

Graph of vector function $\mathbf{f}(t) = (x(t), y(t), z(t))$ is a space curve.

Graph of vector function $\mathbf{r}(t) = (x(t), y(t))$ defined on $I \subset \mathbf{R}$ is a plane curve k, i.e. set of all such points $X = [x, y] \in \mathbf{E}^2$, if:

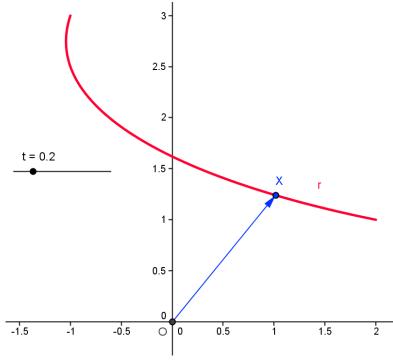
1. $\mathbf{OX} = \mathbf{a} = (xa, ya) \in V^2(\mathbf{R})$, vector \mathbf{a} is called position vector of a point on the curve

2.
$$\exists t \in I; \mathbf{a} = \mathbf{r}(t) = (x(t), y(t))$$

Parametric equations of curve $x = x(t), y = y(t), t \in I$ Vector equation $\mathbf{r}(t) = (x(t), y(t)), t \in I$

Circle

$$\mathbf{r}(t) = (r\cos(t), r\sin(t)), t \in <0, 2\pi>, r \in \mathbf{R}$$



Graph of vector function $\mathbf{r}(t) = (x(t), y(t), z(t))$ defined on $I \subset \mathbf{R}$ is a space curve K, i.e. set of all such points $X = [x, y, z] \in \mathbf{E}^3$, for which:

1. $\mathbf{OX} = \mathbf{a} = (xa, ya, za) \in V^3(\mathbf{R})$, vector \mathbf{a} is called position vector of

a point on the curve

2.
$$\exists t \in I; \mathbf{a} = \mathbf{r}(t) = (x(t), y(t), z(t))$$

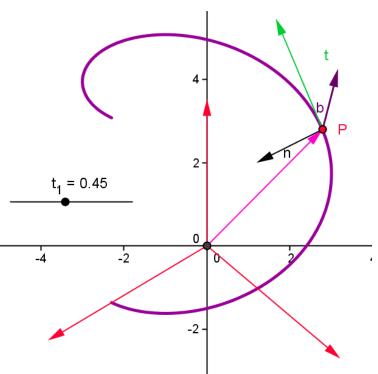
Parametric equations of curve $x = x(t), y = y(t), z = z(t), t \in I$

Vector equation

$$\mathbf{r}(t) = (x(t), y(t), z(t)), t \in I$$

Helix

$$\mathbf{r}(t) = (r\cos(t), r\sin(t), vt), t \in <0, 2\pi>, r \in \mathbf{R}$$



Concept of vector function of one variable can be generalised to the vector function of more variables.

Let M be a reular simply connected region – subset of \mathbb{R}^n and $V^n(\mathbb{R})$ be vector space over real numbers.

Mapping **f** from set \mathbb{R}^n to vector space $V^n(\mathbb{R})$, in which any n-tuple of real numbers $(t_1, t_2, ..., t_n) \in M$ is attached a vector from space $V^n(\mathbb{R})$

$$\mathbf{f}: M \to V^n(\mathbf{R}), \ (t_1, t_2, ..., t_n) \to \mathbf{f}(t_1, t_2, ..., t_n)$$

$$\mathbf{f}(t_1, t_2, ..., t_n) = (f_1(t_1, t_2, ..., t_n), f_2(t_1, t_2, ..., t_n), ..., f_n(t_1, t_2, ..., t_n))$$

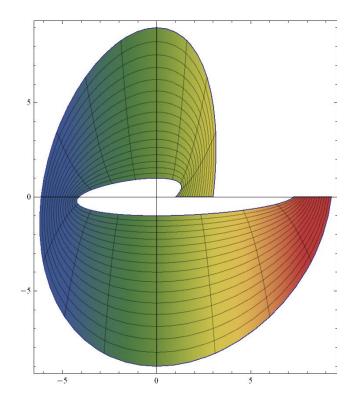
where $f_1(t_1, t_2, ..., t_n)$, $f_2(t_1, t_2, ..., t_n)$, ..., $f_n(t_1, t_2, ..., t_n)$ are real functions with n real variables $t_1, t_2, ..., t_n$ (coordinate functions) defined on the same region M, is a vector function $\mathbf{f}(t_1, t_2, ..., t_n)$ of n real variables $t_1, t_2, ..., t_n$.

Vector function of two variables defined on $M \subset \mathbb{R}^2$, while range is subset of space $V^2(\mathbb{R})$ is a mapping, in which any ordered pair of real numbers $(u, v) \in M$ is attched a vector from $V^2(\mathbb{R})$

$$\mathbf{f}: M \to \mathbf{V}^2(\mathbf{R}), \ (u, v) \to \mathbf{f}(u, v)$$
$$\mathbf{f}(u, v) = (x(u, v), y(u, v))$$

Graph of function \mathbf{f} is a planar region in the space \mathbf{E}^2 .

Planar region $\mathbf{f}(u, v) = ((u + v)\cos v, u^2\sin v)$ $(u, v) \in <1, 3> \times <0, 2\pi>$



Vector function of two variables defined on $M \subset \mathbb{R}^2$ with the range of values in the vector space $V^3(\mathbb{R})$ is mapping, in which any ordered pair of real numbers $(u, v) \in M$ is attached a vector from $V^3(\mathbb{R})$

$$\mathbf{f}: M \to \mathbf{V}^3(\mathbf{R}), (u, v) \to \mathbf{f}(u, v)$$
$$\mathbf{f}(u, v) = (x(u, v), y(u, v), z(u, v))$$

Graph of function is a surface in space E^3 , which can be mapped in 2D view by means of one from the known projection methods used in descriptive geometry.

Sphere

 $\mathbf{p}(u, v) = (r\cos u \cos v, r\cos u \sin v, r\sin v)$ $(u, v) \in \langle 0, 2\pi \rangle^2, r \in \mathbf{R}$

