Surface integrals

Let S be a regular surface given by parameterization

$$\mathbf{r}(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}, (u, v) \in G \subset \mathbf{R}^2$$

and f(X) be a scalar function defined and continuous on S.

Surface integral of the first type is integral from function f

$$\iint_{S} f(X)dS = \iint_{G} f(\mathbf{r}(u,v)) \cdot |\mathbf{r}'_{u}(u,v) \times \mathbf{r}'_{v}(u,v)| du dv$$

Integral does not depend on the chosen parameterization of surface S.

Coordinate form of the formula is

$$\iint\limits_{S} f(x, y, z) dS =$$

$$= \iint_{G} f(x(u,v), y(u,v), z(u,v)) \cdot \sqrt{\begin{vmatrix} y'_{u} & z'_{u} \\ y'_{v} & z'_{v} \end{vmatrix}^{2} + \begin{vmatrix} x'_{u} & z'_{u} \\ x'_{v} & z'_{v} \end{vmatrix}^{2} + \begin{vmatrix} x'_{u} & y'_{u} \\ x'_{v} & y'_{v} \end{vmatrix}^{2}} du dv$$

If surface S is graph of function z = z(x, y), $[x, y] \in G \subset \mathbb{R}^2$, integral has form

$$\iint_{S} f(x, y, z) dS =$$

$$= \iint_{G} f(x, y, z(x, y)) . \sqrt{1 + [z'_{x}(x, y)]^{2} + [z'_{y}(x, y)]^{2}} dx dy$$

Physical meaning - mass of surface S with density function f(X).

Geometric interpretation

Area of surface S

$$\iint_{S} dS$$

Let a regular oriented surface S be given by parameterization

$$\mathbf{r}(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}, (u, v) \in G \subset \mathbf{R}^2$$

and vector function F(X) be defined and continuous on S

$$F(X) = (P(x, y, z), Q(x, y, z), R(x, y, z))$$

Surface integral of the second type is integral from function F

$$\iint_{S} \boldsymbol{F}(X) d\boldsymbol{S} = \pm \iint_{G} \boldsymbol{F}(\boldsymbol{r}(u,v)) \cdot (\boldsymbol{r}'_{u}(u,v) \times \boldsymbol{r}'_{v}(u,v)) du dv$$

Integral does not depend on the chosen parameterization of surface *S*, but it depends only on its orientation.

Coordinate form the formula is

$$\iint_{S} \boldsymbol{F}(x,y,z)d\boldsymbol{S} = \pm \iint_{S} \begin{vmatrix} P(\boldsymbol{r}(u,v)) & Q(\boldsymbol{r}(u,v)) & R(\boldsymbol{r}(u,v)) \\ x'_{u}(u,v) & y'_{u}(u,v) & z'_{u}(u,v) \\ x'_{v}(u,v) & y'_{v}(u,v) & z'_{v}(u,v) \end{vmatrix} du dv$$

If surface S is graph of function z = z(x, y), $[x, y] \in G \subset \mathbb{R}^2$, integral has form

$$\iint_{S} F(x, y, z) dS =$$

$$= \pm \iint_{S} [-P(x, y, z(x, y)).z'_{x}(x, y) - Q(x, y, z(x, y)).z'_{y}(x, y) + R(x, y, z(x, y))] dx dy$$

Physical meaning

- calculation of a flow in vector field determined by vector function F, while surface S is located in the given field
- if function F determines velocity of flowing liquid (gass), then

$$\int_{S} \boldsymbol{F}(x, y, z) dS$$

represents the total quantity of liquid (gass), that has flown through the surface *S* in directon of orientation for a time unit (surface flow rate)

Gauss – Ostrogradsky theorem

Let V be a three-dimensional region bounded by a simple closed surface S oriented by exterior normal vector. Let F be a vector function defined and continuous on region V with continuous partial derivatives of the first order. Then it holds

$$\iint_{S} \mathbf{F}(x, y, z) d\mathbf{S} = \iiint_{V} div \mathbf{F} dx dy dz$$

Consequence

If region V satisfies conditions of the Gauss-Ostrogradsky theorem, then the volume of region V can be calculated as follows

$$\mu(V) = \frac{1}{3} \iint_{S} (x, y, z) dS$$

Stokes' theorem

Let S be smooth oriented surface bounded by closed smooth curve K and let vector function F and its first partial derivatives be continuous on certain open set containing surface S. Then, if orientation of both surface S and curve K is conformable, it holds

$$\oint_{K} \mathbf{F}(x, y, z) d\mathbf{r} = \iint_{S} rot \mathbf{F}(x, y, z) d\mathbf{S}$$

If for an oriented surface *S* and a simple curve *K* located on surface *S* holds that from the direction of the unit normal vector we turn round the curve *K* in an anti-clock-wise manner, we say that curve *K* and surface *S* are conformably oriented.