Line (curve) integrals

Let f(X) be a scalar function, non-negative and continuous on region $\Omega \subset \mathbb{R}^2$ and let a regular plane curve K be given by parameterization

$$r(t) = x(t)i + y(t)j, t \in \langle \alpha, \beta \rangle \subset R.$$

Line (curve) integral of the first type is integral from function f

$$\int_{K} f(X)d\mathbf{r} = \int_{\alpha}^{\beta} f(x(t), y(t)).\sqrt{[x'(t)]^{2} + [y'(t)]^{2}}dt$$

Integral does not depend on the chosen parameterization of curve *K*.

Vector form of the formula is

$$\int_{K} f(X)d\mathbf{r} = \int_{\alpha}^{\beta} f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$$

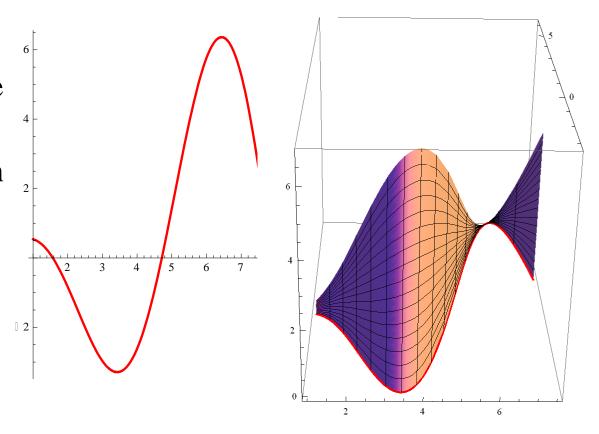
Physical meaning - mass of a plane curve K with density function f(X).

Geometric interpretation

Area of a patch of ruled surface (cylindrical patch) whose generating lines are in direction of axis z and basic curve is plane curve K. Surface patch is bounded from above by values of function f(x, y) at the points of basic curve K.

Length of curve *K* is

$$l = \int_{K} d\mathbf{r} = \int_{\alpha}^{\beta} |\mathbf{r}'(t)| dt$$



Let f(X) be a scalar function, non-negative and continuous on region $\Omega \subset \mathbb{R}^3$ and let a regular curve K be given by parameterization

$$r(t) = x(t)i + y(t)j + z(t)k, t \in \langle \alpha, \beta \rangle \subset R$$

Line (curve) integral of the first type from function f is

$$\int_{K} f(X)d\mathbf{r} = \int_{\alpha}^{\beta} f(x(t), y(t), z(t)) \cdot \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt$$

Integral does not depend on the chosen parameterization of curve *K*.

Vector form of the formula is

$$\int_{K} f(X)d\mathbf{r} = \int_{\alpha}^{\beta} f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$$

Physical meaning – mass of a space curve K with density function f(X).

Let vector function F(x, y) = P(x, y) i + Q(x, y) j be differentiable on region $\Omega \subset \mathbb{R}^2$ and let a regular oriented curve K be given by parameterization

$$r(t) = x(t)i + y(t)j, t \in \langle \alpha, \beta \rangle \subset R$$

Line (curve) integral of the second type is integral from function F

$$\int_{K} P \, dx + Q \, dy = \int_{\alpha}^{\beta} \left[P \frac{dx}{dt} + Q \frac{dy}{dt} \right] dt$$

Vector form of the formula is

$$\int_{K} \mathbf{F} d\mathbf{r} = \pm \int_{\alpha}^{\beta} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{\alpha}^{\beta} [P(x(t), y(t)) \cdot x'(t) + Q(x(t), y(t)) \cdot y'(t)] dt$$

Let vector function be given

$$F(x, y, z) = P(x, y, z) \mathbf{i} + Q(x, y, z) \mathbf{j} + R(x, y, z) \mathbf{j}$$

differentiable on region $\Omega \subset \mathbf{R}^3$ and let a regular oriented curve K be given by parameterization $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}, t \in \langle \alpha, \beta \rangle \subset \mathbf{R}$.

Line (curve) integral of the second type from function F is

$$\int_{K} P dx + Q dy + R dz = \int_{\alpha}^{\beta} \left[P \frac{dx}{dt} + Q \frac{dy}{dt} + R \frac{dz}{dt} \right] dt$$

Vector and coordinate form of the formula is

$$\int_{K} \mathbf{F} \, d\mathbf{r} = \pm \int_{\alpha}^{\beta} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt =$$

$$= \int_{\alpha}^{\beta} [P(x(t), y(t), z(t)) \cdot x'(t) + Q(x(t), y(t), z(t)) \cdot y'(t) + R(x(t), y(t), z(t)) \cdot y'(t)] \, dt$$

Let (Ω, \mathbf{F}) be a vector field.

We say that line (curve) integral from function F does not depend on the integration path (trajectory) in the region Ω , if for any two oriented, piecewise smooth curves K_1 , K_2 that are located in the region Ω and both possess common start and end points holds

$$\int_{K_1} \mathbf{F} \, d\mathbf{r} = \int_{K_2} \mathbf{F} \, d\mathbf{r}$$

Line (curve) integral from function F does not depend on the integration path in the region Ω if and only if the line (curve) integral from function F on an arbitrary closed, piece-wise smooth curve is vanishing (is equal to zero).

Line (curve) integral does not depend on the integration path if and only if the vector field (Ω, \mathbf{F}) is a potential field.

If U is a potential of the feld

$$\mathbf{F} = \operatorname{grad} U = \frac{\partial U}{\partial x} \mathbf{i} + \frac{\partial U}{\partial y} \mathbf{j} + \frac{\partial U}{\partial z} \mathbf{k}$$

then for an arbitrary piece-wise smooth curve K in Ω with the start point A and end point B holds

$$\int_{K} \mathbf{F} \, d\mathbf{r} = U(B) - U(A)$$

Let continuous partial derivatives of the first order of function F exist on Ω .

Necessary condition for the field (Ω, \mathbf{F}) to be a potential field is the validity of equation rot $\mathbf{F} = \mathbf{0}$ at any point of the region Ω .

If Ω is a simply continuous region (with boundary in a simple closed piecewise curve), this condition is also a sufficent condition.

Green's theorem

Let G be a simply connected region with boundary in a simple closed piecewise curve K. Let continuous partial derivatives with respect to x and y exist on G for vector function

$$F(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}.$$

Then it holds

$$\oint_{K} \mathbf{F} . d\mathbf{r} = \iint_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy$$

Consequence

Let *G* be a plane region bounded by positively oriented closed simple and piece-wise smooth curve *K*.

Then, for the area of this region holds

$$P = \frac{1}{2} \oint_{K} x \, dy - y \, dx$$