PROBLEMS ON FIELDS

Problem 1: Find domain of definition Ω of function f, calculate gradient of function f and its derivative in given direction s and determine their values a the point X_0

a)
$$f(x, y) = 2x^2 + 3y^2$$
, $s = (0, 1)$, $X_0 = [1, 1]$

b)
$$f(x, y) = \frac{x + y}{1 - xy}, s = (-1, 1), X_0 = [1, -1]$$

c)
$$f(x, y) = \ln \sqrt{x^2 + y^2}$$
, $s = (3, 4)$, $X_0 = [-1, -1]$

d)
$$f(x, y, z) = 2x^3y^2z^4$$
, $s = (1, 1, 1)$, $X_0 = [1, 1, 1]$

d)
$$f(x, y, z) = 2x^3y^2z^4$$
, $s = (1, 1, 1)$, $X_0 = [1, 1, 1]$
e) $f(x, y, z) = \sin(x + y^2 + z^3)$, $s = (0, 0, -1)$, $X_0 = [0, 0, \pi]$

f)
$$f(x, y, z) = e^{x}y + \ln z$$
, $s = (1, 1, -1)$, $X_0 = [0, 1, 1]$

Solution: a) $\Omega = \mathbb{R}^2$, F(X) = grad f = (4x, 6y), $F(X_0) = (4, 6)$, $f'_s(X) = 6y$, $f'_s(X_0) = 6$,

b)
$$\Omega = \{(x, y) \in \mathbb{R}^2, xy \neq 1\}, F(X) = \text{grad } f = \left(\frac{1 + y^2}{(1 - xy)^2}, \frac{1 + x^2}{(1 - xy)^2}\right), F(X_0) = (1/2, 1/2),$$

$$f'_{s}(X) = \frac{x^{2} - y^{2}}{\sqrt{2}(1 - xy)^{2}}, f'_{s}(X_{0}) \text{ not defined },$$

c)
$$\Omega = \{(x, y) \in \mathbb{R}^2, x \lor y \ne 0\}, F(X) = \text{grad } f = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right), F(X_0) = (-1/2, -1/2),$$

$$f'_s(X) = \frac{4y - 3x}{5(x^2 + y^2)}, f'_s(X_0) = -0.1,$$

d)
$$\Omega = \mathbb{R}^3$$
, $F(X) = \text{grad } f = (6x^2y^2z^4, 4x^3yz^4, 8x^3y^2z^3)$, $F(X_0) = (6, 4, 8)$,

$$f'_s(X) = \frac{6x^2y^2z^4 + 4x^3yz^4 + 8x^3y^2z^3}{\sqrt{3}}, f'_s(X_0) = 6\sqrt{3},$$

e)
$$\Omega = \mathbb{R}3$$
, $F(X) = \text{grad } f = (\cos(x + y^2 + z^3), 2y\cos(x + y^2 + z^3), 3z^2\cos(x + y^2 + z^3))$,

$$F(X_0) = (-1, -2\pi, -3\pi^2), f'_s(X) = -3z^2\cos(x + y^2 + z^3), f'_s(X_0) = -3\pi^2\cos\pi^3,$$

f)
$$\Omega = \{(x, y, z) \in \mathbb{R}^3, z > 0\} \mathbb{R}^3, F(X) = \text{grad } f = (e^x y, e^x, 1/z), F(X_0) = (1, 1, 1),$$

$$f'_s(X) = \frac{ye^x + e^x - 1}{\sqrt{3}}, f'_s(X_0) = \frac{1}{\sqrt{3}}.$$

Problem 2: Find all such points in the region Ω , at which gradient of the scalar field (Ω, f) defined by function f from Problem 1. vanishes on Ω , and all such points, at which the gradient reaches the maximal value.

Solution: a) point [0, 0], $|grad f| = \sqrt{16x^2 + 36y^2}$, increases over any bounds, \emptyset ,

b)
$$\varnothing$$
, $|grad f| = \frac{\sqrt{(1+x^2)^2 + (1+y^2)^2}}{(1-xy)^2}$, increases over any bounds, \varnothing

c)
$$\varnothing$$
, $|grad f| = \frac{1}{\sqrt{x^2 + y^2}}$, has no stationary points, \varnothing

d) all points of coordinate planes
$$x = 0$$
, $y = 0$, $z = 0$,

$$|grad f| = 2x^2yz^3\sqrt{9y^2z^2 + 4x^2z^2 + 16x^2y^2}$$
, increases over any bounds, \varnothing

- e) points of equipotential surfaces, whose coordinates satisfy equations $x + y^2 + z^3 = k \cdot \pi/2$, $k \in \mathbb{Z}$, $|grad f| = \cos r \sqrt{1 + 4y^2 + 9z^4}$, $r = x + y^2 + z^3$, points, whose coordinates satisfy equations $x + y^2 + z^3 = 2k \cdot \pi$, $k \in \mathbb{Z}$
- f) \varnothing , $|grad f| = \sqrt{e^{2x}(y^2 + 1) + \frac{1}{z^2}}$, no stationary points, \varnothing

Problem 3: Find divergence of a vector field defined by a differentiable vector function F on \mathbb{R}^3 , evaluate value of divergence at the point X_0 and determine type of field (solenoidal, rotational)

a)
$$F(x, y, z) = (x + y + z, y + z, z), X_0 = [1, 1, 1]$$

b)
$$F(x, y, z) = (x^2z, -2y^3z^2, xy^2z), X_0 = [1, -1, 1]$$

c)
$$F(x, y, z) = (x^2y, 2xz, -2yz), X_0 = [-1, -1, 0]$$

d)
$$F(x, y, z) = (y^2, -yz, 2x), X_0 = [0, 0, 1]$$

e)
$$F(x, y, z) = (xyz, x + y + z, xy + yz), X_0 = [0, 1, 1]$$

f)
$$F(x, y, z) = (x(1 + y + z), y(x + 1 + z), z(x + y + 1)), X_0 = [1, 1, 1]$$

Solution: a) div F = 3, rotational field

b) div
$$F = 2xz - 6y^2z^2 + xy^2$$
, div $F(1, -1, 1) = -3$, rotational field

c) div
$$F = 2xy - 2y$$
, div $F(-1, -1, 0) = 4$, rotational field with flow

d) div
$$\mathbf{F} = -z$$
, div $\mathbf{F}(0, 0, 1) = -1$, rotational field with flow

e) div
$$\mathbf{F} = yz + 1 + y$$
, div $\mathbf{F}(0, 1, 1) = 3$, rotational field with flow

f) div
$$\mathbf{F} = 3 + 2(x + y + z)$$
, div $\mathbf{F}(1, 1, 1) = 9$, rotational field with flow

Problem 4: Find all such points in \mathbb{R}^3 , at which divergence of a vector field from Problem 3. vanishes.

Solution: a) div $F = 3 \neq 0$. \varnothing

b)
$$2xz - 6y^2z^2 + xy^2 = 0$$
, quartic surface determined by the given equation

c)
$$y = 0$$
, coordinate plane xz and plane $x = 1$ parallel to coordinate plane yz

d) z = 0, coordinate plane xy

e) y(z + 1) + 1 = 0, quadric surface determined by the given equation

f)
$$2x + 2y + 2z + 3 = 0$$
, plane

Problem 5: Find curl of a vector field determined by a vector function F from Problem 3., evaluate its value at the point X_0 and determine whirls at the given point.

Solution: a) curl F = (-1, 1, -1), constant whirl at all points of the vector field with velocity $| \operatorname{curl} F | = v = \sqrt{3}$

b) curl
$$\mathbf{F} = (yz(2x + 4y^2), x^2 - y^2z, 0)$$
, curl $\mathbf{F}(1, -1, 1) = (-6, 0, 0)$, whirl with velocity $v = 6$

c) curl
$$F = (-2(x+z), 0, 2z - x^2)$$
, rot $F(-1, -1, 0) = (2, 0, -1)$, whirl with velocity $v = \sqrt{5}$

d) curl
$$F = (y, -2, -2y)$$
, rot $F(0, 0, 1) = (0, -2, 0)$, whirl with velocity $v = 2$

e) curl
$$F = (x + z - 1, xy - y, xz + 1)$$
, rot $F(0, 1, 1) = (0, -1, 1)$, whirl with velocity $v = \sqrt{2}$

f) curl
$$F = (z - y, x - z, y - x)$$
, rot $F(1, 1, 1) = (0, 0, 0)$, no whirl at the point

Problem 6: Find all such points in \mathbb{R}^3 , at which curl of the vector field determined by the vector function \mathbf{F} from Problem 3. vanishes (there exist no whirl at the point) and points, at which the rotation is maximal.

Solution: a) \emptyset , constant rotation $|\operatorname{curl} \mathbf{F}| = \sqrt{3}$

- b) [0, 0, z] points at axis z and [0, y, 0] points at axis y and points $[-1/2, \pm 1/2, 1]$, $|\operatorname{curl} \mathbf{F}| = \sqrt{y^2 z^2 (2x + 4y^2)^2 + (x^2 y^2 z)^2}$, increases over any bounds \emptyset
- c) [0, y, 0] points at axis y and [-2, y, 2] points on line parallel to axis y, $|\operatorname{curl} \mathbf{F}| = \sqrt{4(x+z)^2 + (2z-x^2)^2}$, increases over any bounds \emptyset
- d) \varnothing , $|\operatorname{curl} \mathbf{F}| = \sqrt{4 + 5y^2}$, increases over any bounds \varnothing

e)
$$\left[\frac{1-\sqrt{5}}{2}, \frac{2}{1-\sqrt{5}}, \frac{1+\sqrt{5}}{2}\right], \left[\frac{1+\sqrt{5}}{2}, \frac{2}{1+\sqrt{5}}, \frac{1-\sqrt{5}}{2}\right]$$

 $\left| \operatorname{curl} \mathbf{F} \right| = \sqrt{(x+z-1)^2 + (xy-1)^2 + (xz+1)^2}$, increases over any bounds - \emptyset

f) [1, 1, 1],
$$| \operatorname{rot} \mathbf{F} | = \sqrt{(z-1)^2 + (x-z)^2 + (y-z)^2}$$
, increases over any bounds - \emptyset

Problem 7: Find out, whether the vector field determined by vector function F is irrotational and find points of vanishing divergence of function F and points, at which it is extremal:

a)
$$\mathbf{F}(x, y, z) = (2x^2 + 8xy^2z, 3x^3y - 3xy, -4y^2z^2 - 2x^3z)$$

- b) $F(x, y, z) = (-2xz^3, -2yz^3, z^4)$
- c) $F(x, y, z) = (xy x^3, x^3, -yz)$
- d) $F(x, y, z) = (x + y z^3, xy^2, -xyz^2)$
- e) $\mathbf{F}(x, y, z) = (x^3, y^3, z^3)$
- f) $\mathbf{F}(x, y, z) = (x^2 + y^2 + z^2, x^2y^2 + 3y^2z^2 + x^2z^2, -2xz 2x^2yz 2yz^3)$

Solution: a) div $\mathbf{F} = x^3 + x \neq 0$, not solenoidal, div $\mathbf{F} = 0$ at points [0, y, z], at all other points it is increasing, $[\text{div } \mathbf{F}]' = 3x^2 + 1 > 0$

- b) div $F = -2z^3 2z^3 + 4z^3 = 0$, solenoidal field
- c) div $\mathbf{F} = y 3x^2 + 3x^2 y = 0$, solenoidal field
- d) div $F = 1 + 2xy 2xyz \ne 0$, not solenoidal field, div F = 0 at points determined by equation $z = 1 + \frac{1}{2xy}$, no extremes
- e) div $\mathbf{F} = 3x^2 + 3y^2 + 3z^2 \neq 0$, not solenoidal field, div $\mathbf{F} = 0$ at point [0, 0, 0], at all other points it is increasing

f) div
$$\mathbf{F} = 2x + 2x^2y + 6yz^2 - 2x - 2x^2y - 6yz^2 = 0$$
, solenoidal field

Problem 8: Express Laplacian of the vector field determined by the vector function F form Problem 7. and find points, at which it is vanishing.

Solution: a) $\Delta F = (4 + 16xz, 18xy, -12xz - 8z^2 - 8y^2), \Delta F \neq \mathbf{0}$ at all points of the field

- b) $\Delta F(-12xz, 12yz, 12z^2)$, $\Delta F = \mathbf{0}$ at points [x, y, 0] in the coordinate plane xy
- c) $\Delta F = (-6x, 6x, 0), \Delta F = \mathbf{0}$ at points [0, y, z] of the coordinate plane yz
- d) $\Delta F = (6yz, 2x, -2xy), \Delta F = \mathbf{0}$ at points [0, y, 0] of the coordinate axis y
- e) $\Delta F = (6x, 6y, 6z), \Delta F = \mathbf{0}$ at point [0, 0, 0]
- f) $\Delta F = (6, 4x^2 + 8y^2 + 8z^2, -16yz), \Delta F \neq 0$ at all points of the field