Kruhová inverze

Kamil Maleček, Fakulta Stavební ČVUT, Thákurova 7,166 29 Praha 6,
e-mail: kamil@mat.fsv.cvut.cz

Dagmar Szarková, Strojnícka fakulta STU, Námestie Slobody 17, 812 31 Bratislava
e-mail: szarkova@sjf.stuba.sk

Abstrakt: V příspěvku se zabýváme transformacemi v rovině pi, které jsou tvořeny pomocí složení dvou lineárních promítání a regulární rotační kvadratické plochy kapa. Takto vytvořená transformace je buď kruhová inverze nebo složení kruhové inverze se středovou souměrností.


1. Úvod

V [1] jsme ukázali, jak tvořit geometrickým způsobem některé lineární transformace v rovině pi chápané jako rozšířenou euklidovskou rovinu. Transformaci f jsme tvořili pomocí další roviny kapa a složení dvou lineárních promítání f1 a f2 tak, že f(X) = ´= f2 f1(X). Takto lze vytvořit i osovou souměrnost, kdy rovina kapa je kolmá k rovině pi a promítaní f1 a f2 jsou středová promítání daná středy S1S2, které jsou souměrné podle roviny kapa a neleží v rovině pi. Ze způsobu zavedení plynou tyto velmi dobře známé vlastnosti osové souměrnosti – obr.1:

i)     přímka o = pi prunik kapa je množina samodružných bodů, bodově samodružná přímka o, je osa souměrnosti,
ii)    přímka o rozdělí rovinu pi na dvě poloroviny a obrazem jedné poloroviny je druhá polorovina,
iii)   přímky a kružnice kolmé k ose souměrnosti jsou samodružné,
iv)   osová souměrnost je involuce.


Obr. 1.

 Protože osová souměrnost je involuce, tak nezáleží na pořadí v jakém skládáme středová promítání f1 a f2. Platí, že f(X) = ´= f2 f1(X) =  f1 f2(X). Tuto vlastnost nemají další transformace z [1].

 Dále se budeme zabývat transformacemi v rovině pi (zatím je pi euklidovská rovina), které jsou tvořeny obdobně jako transformace v [1] pomocí složení dvou lineárních promítání, ale rovinu kapa nahradíme regulární rotační kvadratickou plochou. Ukážeme, že takto vytvořená transformace je buď kruhová inverze nebo složení kruhové inverze se středovou souměrností. Kruhová inverze má obdobné vlastnosti jako osová souměrnost, a proto je kruhová inverze považována za analogii osové souměrnosti. Ve [2] se kruhová inverze nazývá souměrností podle kružnice.

 

2. Kruhová inverze

 V euklidovském prostoru E3 mějme dánu rovinu pi a kulovou plochu kapa se středem O , O lezi pi a poloměrem k. Uvažujme dvě středová promítání f1 a f2 se středy S1 a S2 , S1 lezi kapa, S2 lezi kapa a S1S2  pi, viz obr. 2.

Obr. 2.

 

Konstrukce 1 obrazu X´lezi pi zvoleného bodu lezi pi – obr. 2:

1. Sestrojíme bod X s pruhem, který je průmětem bodu X na plochu kapa v promítání f1:  X s pruhem = kapa  .

2. Bod X´ je průmětem bodu X s pruhem do roviny pi v promítání f2:   = pi   .

Bod O nemá obraz. Obraz bodu O dodefinujeme jako nevlastní bod omega roviny pi .  Rovina pi doplněná jedním nevlastním bodem se nazývá Möbiova rovina.

 

Analytické vyjádření transformace popsané v konstrukci 1

Zvolme kartézskou soustavu souřadnic tak, jak je znázorněno na obr. 2. Kulová plocha kapa má rovnici

(1)            Rovnica (1) ,

bod S1 = [0, 0, k] a bod X = [u, v, 0] . Přímka S1X má parametrické vyjádření

(2)           (2) .

Dosadíme-li parametrické rovnice z (2) do rovnice (1), tak dostaneme pro parametr t rovnici

(3)           

Nás zajímají souřadnice bodu X s pruhem, pro který

a po dosazení do (2) je

Bod S2 = [0, 0, -k] a přímka = S2X s pruhem má parametrické vyjádření

(4)          

Pro bod  prienik pi je parametr

a po dosazení do rovnic (4) dostaneme

Píšeme-li místo u resp. v označení x resp. y, pak transformace má analytické vyjádření

(5)          

a to je analytické vyjádření kruhové inverze, která je v rovině pi dána kružnicí, jejíž střed O je střed inverze a k2 je mocnost inverze.

 

2.1. Vlastnosti kruhové inverze

 Uvažujme kulovou plochu kapa jako referenční plochu zeměkoule, body S1 a S2 jsou severní a jižní pól, rovina pi je rovina rovníku. Promítání f1 a f2 můžeme interpretovat jako stereografické projekce do roviny pi. Z vytvoření kruhové inverze složením obou projekcí plynou některé její vlastnosti.

*     Kruhová inverze má vlastnosti analogické vlastnostem i) – iv) osové souměrnosti:

i)       přímka o je nahrazena kružnicí o (množina samodružných bodů), o = kapa  pi (obr. 2),

ii)      úlohu polorovin hraje kruh ohraničený kružnicí o a jeho doplněk v pi (obr. 2),

iii)     přímky a kružnice kolmé ke kružnici o jsou samodružné (obr. 4),

iv)     inverze je involuce, na obr. 2 viz body .

*     Kruhová inverze je konformní zobrazení.

Protože stereografická projekce je konformní zobrazení, tak i složené zobrazení f2 f1 je konformní zobrazení v rovině pi.

*     Obrazem přímky, která prochází středem inverze je táž přímka. Obrazem každé přímky, která neprochází středem inverze, je kružnice, která prochází středem inverze a naopak. Obrazem kružnice, která neprochází středem inverze je opět kružnice.

 

2.2. Obraz kružnice v kruhové inverzi

 Na schematickém obr. 3 je znázorněna konstrukce kružnice , která je obrazem kružnice k neprocházející středem inverze. Promítací plocha kružnice k v promítání f1 je kruhová kuželová plocha omega1 s vrcholem S1. Průmětem kružnice k na kulovou plochu kapa je kružnice k s pruhem a její průmět do roviny pi v promítání f2 je kružnice , která je řezem promítací kruhové kuželové plochy omega2 rovinou pi.

Na schematickém obr. 4 je znázorněná obdobná situace pro případ, kdy k = k' , kružnice k a o jsou ortogonální. Všimněme si speciální polohy roviny ro, ve které leží kružnice k s pruhem, a roviny pi. Jsou kolmé a průsečnice rovin ro a pi je průměrem kružnice k s pruhem.

 Obr. 3

Obr. 4

 

Poznámka 1 o středovém průmětu kružnice:

Uvažujme středové promítání dané středem S1 a průmětnou ro. Na obr. 3 a 4 vidíme, že středovým průmětem kružnice k je kružnice k s pruhem , i když kružnice nejsou v průčelné poloze.

Poznámka 2 o průniku kruhových kuželových ploch:

Nechť omega1 a omega2 jsou kruhové kuželové plochy v poloze znázorněné na obr. 3 (obr. 4). Pak průnik kuželových ploch omega1 a omega2 se rozpadá na dvě kružnice k s pruheml. Obě kružnice navíc leží na kulové ploše , pro kterou je kružnice l hlavní kružnicí.

 Lze toto tvrzení obrátit? Jinak řečeno: rozpadá se průnik dvou kruhových kuželových ploch na dvě kružnice i v jiné jejich poloze?

 

3. Kruhová inverze vytvořená pomocí rotačního elipsoidu

 V rovině pi je kruhová inverze dána kružnicí o samodružných bodů. Nahraďme proto kulovou plochu kapa rotačním elipsoidem 1kapa, jehož řez rovinou pi je kružnice o. Označme 1S1 a  1S2 jeho vrcholy. Na obr. 5 vidíme, že modifikace konstrukce 1 na elipsoid 1kapa vede ke kruhové inverzi z předchozího odstavce. Elipsoid 1kapa je totiž obrazem kulové plochy kapa v dilataci dané rovinou pi a dvojicí S1 sipka1S1vzoru a obrazu.

Poznámka 3 o bodové konstrukci elipsy:

Na obr. 5 je vlastně znázorněna bodová konstrukce elipsoidu 1kapa, resp. bodová konstrukce jeho meridiánové elipsy pomocí inverze.

 Nechť elipsa je dána vrcholy K, L na ose x a vrcholy 1S1 a 1S2 na ose z. Nechť X a je dvojice odpovídajících si bodů v inverzi na přímce x, která má střed O a K, L jsou její samodružné body. Potom průsečík přímek 1S1X a 1S2X´ je bod elipsy, na obr. 5 je to bod 1.

Obr. 5

 Obr. 6.

 

 

4. Kruhová inverze vytvořená pomocí rotačního paraboloidu

 Vytvoření kruhové inverze pomocí rotačního paraboloidu kapa vidíme na schematickém obr. 6. Promítání f1 je středové promítání se středem S1 – vrchol paraboloidu, f2 je rovnoběžné promítání, jeho směr je dán směrem osy paraboloidu. Analytické vyjádření (5) bychom odvodili podobně jako ve 2. odstavci.

Poznámka 4 o bodové konstrukci paraboly:

Na obr. 6 je znázorněna bodová konstrukce meridiánové paraboly rotačního paraboloidu. Parabola je dána vrcholem S1, osou a body K, ,  které jsou souměrné podle osy. Jsou-li X a  X´ vzorem a obrazem v inverzi na přímce x = KL , pak bod X s pruhem = promítací přímka bodu X promitaci přímka bodu X s pruhem je bodem paraboly.

 


Obr. 7.

 

Na obr. 7 je znázorněna konstrukce kružnice k´, která je obrazem kružnice k v kruhové inverzi. Konstrukce je provedena pomocí promítací plochy omega1 – kruhová kuželová plocha a  omega2 – eliptická válcová plocha. Průnik promítacích ploch se rozpadá na elipsu k s pruhema kružnici l.  Bezprostředním důsledkem je známé tvrzení:

Pravoúhlý průmět elipsy na rotačním paraboloidu do roviny kolmé k ose rotace je kružnice.

 

5. Transformace vytvořená pomocí dvojdílného rotačního hyperboloidu

 Plocha kapa je dvojdílný rotační hyperboloid, jehož meridiánem je rovnoosá hyperbola s vrcholy S1 a S2 na ose rotace. Vytvoření transformace pomocí středových promítání f1 a f2 se středy S1 a S2 vidíme na schematickém obr. 8. Tato transformace má analytické vyjádření

(6)           Vztah (6)

Je zřejmé, že transformace je složení kruhové inverze (5) a středové souměrnosti se středem O. Transformace nemá reálné samodružné body.

Obr. 8.

Literatura: