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Abstract. Tractography is a method to map white matter bundles within brain tissue based
on diffusion MRI techniques. It seems to be a promising way of detecting white matter
structure in vivo, however, method seems to be prone to false positives if standard methods
of tractography are used. The paper promises to explore the possibilities of optimization
techniques which would enable to include more informative models to the tractography
procedure by filtering out false positives from a set of candidate tracts. To detect anatomically
plausible tracts, inverse problem from matrix equation y = Ax is solved with help of
pseudo-inversion technique. However, pseudo-inversion seems to be inappropriate for system
of such dimensions and conditioning.
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1 Introduction
Tractography is a MRI based procedure which aims to map the structure of brain white matter in vivo.
White matter is a special kind of neuronal tissue formed by axons, longitudinal cells which tend to
cluster into bundles. Since the watter diffusion within white matter follows tissue structure, and since
it is possible to detect the directionality of diffusive motion by diffusion MRI techniques, we can
derive strucutral information about tissue architecture from MRI data. Such assumption works well
for white matter bundles with single population of parallel axons within voxel. However, experiments
shown that voxels with strictly homogeneous fiber population are rather rare than in majority [1].

Modeling of the diffusive motion within white matter tissue is a process of per-voxel prediction of the
diffusion signal by fitting some tissue model. The underlying architecture of the white matter can be
suprisingly complex (multiple fiber populations within voxel etc.). If the more complex tissue model
is applied, the more trustworthy the fit may be, however computational burden of such procedures
critically grows.

Oversimplification of the real situation within neuronal tissue may often lead to untrustworthy results
of tractography since the tractography builds the tracts on a basis of information about direction of
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the diffusive motion within each voxel. False positive results may be detected. Improving reliability
of tractography may be done by using more complex models and smart tracking algorithm (such
algorithm appeared in recent literature [2]) or filter out false positive tracts built by standard simple
tractography methods [6].

This paper deals with the option of determining anatomically plausible tracts by incorporating mi-
crostructural models to the analysis, as shown in [6], but via inverse problem solution.

2 Theoretical background
2.1 COMMIT

COMMIT, acronym for convex optimization modeling for microstructure informed tractography, is
a post-processing tractography framework working in a top-down fashion. Given a tractogram com-
puted by any of the conventional tractography methods, it selects the set of fibers describing the
acquired DMRI data the best. The only prerequisite for the candidate set is that it contains true
positives, possibly includes many false positives [6].

Once the candidate pathways have been estimated, DMRI signal contribution of every tract is mapped
to each voxel of the image. For this purpose, multi-compartment model containing hindered, re-
stricted and free diffusion compartment is included to characterize neuronal tissue [6].

For restricted compartment, each fiber has one column. Hypothetically, each fiber can be described
by more columns if more fiber populations are considered. In case of hindered compartment, only
one extraaxonal compartment is described for every fiber population, aiming to avoid redundancy.

The predicted signal S(q) at q-space location q, in a voxel can be expressed as a linear combination
of the subsets of tracts, equation (1). In equation (1) standard biomedical labeling of the variables is
used.

S(q) =
∑
F〉∈F

f ICi RIC
i (q) +

∑
F〉∈F

fEC
i REC

i (q) + f ISORISO(q) (1)

WhereRIC
i ,REC

i ,RISO
i are the predicted signal profiles for each compartment, these can be estimated

from the data or synthetically generated with analytic models. It is assumed that microstructure
parameters remain the same along the bundle. Variables f IC , fEC and f ISO are the corresponding
fractal volumes. F〉 is the ith fiber, in equation (1) meaning global contribution of the diffusion arising
from all traced fibers. In other words, if the fiber does not cross a voxel there is no signal contribution
from it in that voxel [6].

y = Ax+ η (2)

Figure 1 pictures the COMMIT model, which can be also expressed by equation (2). Where y ∈
Rndnv

+ is the vector containing the nd q-space samples acquired in all nv voxels, η means acquisition
noise and modeling errors, A ∈ Rndnv×nc is the observation matrix, a result of multi-compartment
model in every voxel, x ∈ Rnc are the contributions of the nc basis functions in A.

Schematic representation of COMMIT formulation. Vector y is the set of acquired data, every colored
block means a different voxel (the number of rows of each block depends on a number of diffusion
measurements). A is a block matrix filled with data computed by microstructure model. Each column
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Fig. 1. Schematic representation of COMMIT formulation [6].

for every compartment in matrix A corresponds to the fiber from the set of candidates. If the fiber
does not cross the voxel, there is no signal contribution from it. The single fibre crosses only few
voxels within the dataset, hence the matrix A is sparse. Vector x is a positive weights vector and is
solved by optimization method, non-negative least squares in this case [6].

The goal is to find the optimal vector x, hence to weight fibers with respect to how much their features
are consistent alongside each fiber. In other words the goal is to detect anatomically correct fibers, if
the assumption that fiber parameters are consistent alongside anatomically valid fibers is made.

3 Solution of linear systems
Task described by COMMIT algorithm can be understood as a typical inverse problem. Inverse
problem is mathematical framework that is used to obtain infromation about a physical object or
system from observed measurements. It is useful because it provides information about physical
parameter that we can not measure directly (anatomical correctness of the axon fiber, parameters
consistency, in this case).

If the linear operator A was regular matrix, finding of solution vector x would not be problematic.
However, for singular systems (which arise often from the practical applications), finding the solution
becomes an optimization problem.

To find optimal vector x from a solution space, we tend to minimize the equation (3),

argmin
x≥0

||Ax− y||, (3)

where || · || is a lp norm defined as

||x|| = p

√∑
i

|xi|p, pεR. (4)
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Even though every lp norm look similar, their mathematical properties and applications are very
different, figure 2.

The case of p = 2 is the most important norm in practice. All norms are convex functions, which
makes optimization a convex problem. Other lp norms are however problematic to optimize because
of the computational complexity of the problem (l0 optimization gives interesting results, but it is
NP-hard problem to solve).

Fig. 2. The functions of various p norms.

The pursuit for solutions of

Ax = y (5)

is then the minimization of error ||r||p = Ax− y for some suitable choice of p. For example l2 norm
is computationaly the easiest to reach. Different norms render different optimum solutions.

Minimization of the l2 norm is widespread in various fields of engineering and is called least squares
problem. It is preferred due to uniqueness of the solution (in contrast with other p-norms).

4 Problem formulation
The problem to be optimized is expressed by figure 1. The linear operator A can be understood as a
dictionary of atoms (columns). The aim is to produce representation of the signal y by expressing it
as a linear combination of atoms from A by retrieveing the best solution vector x by minimizing the
support of

x subject to y = Ax. (6)

Than it is possible to use the indices of nonzero components of x to identify the atoms (fibers) that
are significant for reproducing the signal.

The shape of the linear system strongly depends on the size of the candidate set, model used and
even on the acquisition scheme. In vast majority of applications, we are dealing with rectangular
matrix whith tremendous dimensions (it is problematic to store the linear operator if no special format
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exploting sparseness of the matrix is used). Fortunatelly, since each tract crosses only few voxels of
the full volume, the matrix is sparse.

Linear operator A based on a real data is also extremely ill-conditioned. The condition number of
the system is close to infinity (computed by numpy.linalg.cond method on the most dense fragment
of the linear operator, size (1000 x 1000).

5 Solution design
Problem solved is known to be large, sparse, singular (or close to singular) and ill-conditioned. Since
it is known that singular problems are prone to roundoff errors when iterative methods are used,
we decided to choose direct method of computation. Direct methods also enables to reach optimal
solution without iterative procedure. Pseudo-inversion provides the optimal solution in means of l2
optimization.

5.1 Pseudo-inversion by normal equations

In pursuit of finding a solution vector x, it is very intuitive to rearrange the inverse problem equation
as in (7). This solution was proposed because it is theoretically the simplest one. Also, the solu-
tion theoretically guarantees reaching global optimum in terms of ||Ax− y||2, hence least squares,
minimization [4].

Ax = y
x = A−1y

(7)

Since we are dealing with rectangular matrix, it is not possible to compute A−1 by inversion, but it is
necessary to use pseudo-inversion, A+. More approaches how to reach pseudo-inverse of the matrix
A exist. First, lets mention normal equations (8).

Ax = y
ATAx = ATy

x = (ATA)−1AT

(8)

Normal equations are no doubt elegant analysis, since the product of ATA is allways symmetric
matrix. However, we are dealing with badly ill-posed system, and the condition number of ATA
product is the condition number of the original matrix A squared. Such process make the solution of
the system even more prone to the roundoff errors [5].

The computational instability of the pseudo-inversion is shown on well-conditioned and ill-conditioned
problem by comparison of defined vector of solution and vector of solution obtained by pseudo-
inverse. If we define matrices A and y, process is as in (9).

y = Ax
x = A+y

(9)

First of all, analysis is shown on a well-conditioned matrix A1 (condition number = 7.3, with solution
vector x.
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A1 =

 1 2 3
3 2 1
1 2 1

 ,x =

 3
2
1

 (10)

As shown in figure 3, solution vector x reached by pseudoinversion is identical with the original one.

Fig. 3. Pseudo-inverse of the well-conditioned system.

Now, lets analyze ill-conditioned matrix A2 (conditional number 2 ∗ 1016) with solution vector x.

A2 =

 1 0 1
1 1 1
1 2 1

 ,x =

 3
2
1

 (11)

In figure 4 comparison of vector of solution x reached by pseudo-inversion is not identical to the vec-
tor x defined previously. Such error is caused by roundoff errors during the process of computation.

Fig. 4. Pseudo-inverse of the ill-conditioned system.

Note that the condition number of matrix A2 is still very low in comparison with condition number
of system built from neurological data. What is more, the pseudo-inverse of the sparse system is
a very dense matrix, which throws off potentially beneficial feature of the matrix in terms of data
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storage and computational demands. In fact, solution of large ill-posed systems is very challenging
task, sparseness brings a dramatic simplification if used in a sophisticated way.

6 Conclusion
It is not possible to use direct inversion matrix method because linear operator A is not square.

The method of pseudo-inversion is suitable for rectangular matrices, however it seems to be extreme-
ley prone to rounoff errors and comes with inneglilible computational and memory burden if standard
methods [3]) are used.

Method of pseudo-inversion also is not suitable for such task because it does not exploit the sparsen-
est of the linear operator, which comes with significant memory issues. What is more, let be kept in
mind that COMMIT algorithm is just a postprocessing step of improving the sensitivity of the mod-
elling. Incorporation of the more complex models could be computationally more feasible task, if the
candidate dataset would be build based on more precise information. Hence, in COMMIT case, the
task lays a great deal on how the computation is time and space consuming.

Using pseudo-inversion without exploiting the sparsness of the linear operator leads at least to very
multi-dimensional problem resulting in ridiculous time estimations if standard methods and material
was used (months of computation time if standard PC used). What is more, results reached by pseudo-
inversion seems to be non-valid due to ill-posed nature of the problem.

Optimization of a matrix equation y = Ax for real neurological data is challenging task due to di-
mensions of the data and also due to errors which arises from measurement itself. Let assume this
problematics as open problem and find the right way to solve it.
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