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Abstract. The paper presents a mathematical model of a predator-prey population 
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1 Introduction 

The method of qualitative analysis of predator-prey population behaviour by means of 

differential equations was first proposed at the beginning of the last century in [1,2]. These 

models assume continuous contact of predator population, with phase coordinate { ( ), 0}y t t  ,

with the prey population, with a phase coordinate { ( ), 0}x t t  . Subsequently, numerous papers 

on the analysis of a more general system of equations find a stable coexistence of populations 

(see the review in [3]). The most popular and quite common system of differential equations 

describing the dynamics of populations of predator-prey ecosystem is Kolmogorov model [4]: 

( ) ( ) , ( ) ,
dx dy

x x V x y M x y
dt dt

   (1.1) 

with different types of right part of the equation. The simplest prey-predator model, the Lotka-

Volterra model, has a form (1.1) with ( ) , ( )a x V x x   and ( )M x x    , and was 

analysed in detail by authors [1,2]. All the parameters in the equation (1.1) are positive, 

therefore the unique nontrivial equilibrium state of the system is the centre type fixed point 

 / ; /y x     and all phase trajectories have the form of closed orbits. The equation

(1.1) allows to explain the often observable fluctuations in predator-prey populations. However, 

this model is not robust i.e., small perturbations in the right-hand side of the equation (1.1) can 

significantly change the phase portrait. Later, a more realistic model with  
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1( ) (1 ), ( )a x r K x V x x   and ( )M x x    was analysed in many papers (see the 

review in [3]). This model allows us to detect the asymptotically stable equilibrium and

possibility of damped oscillations of predator and prey population size in case of the sufficiently 

high birth rate of the prey population.  There are also the more complicated structurally stable 

prey-predator mathematical models of type (1.1) which can explain persistent oscillations in a 

form of a sable limit cycle. Most popular of this type model is proposed in paper [5] as a 

system of differential equations (1.1) with

1 1( ) (1 ), ( ) ( )a x r K x V x mx A x        and   1( ) ( )M x mx A x     

Despite the plausible qualitative description of the dynamics of populations using different 

variants of equations (1.1), it can be argued that this equation describes the behaviour of 

predator-prey ecosystem only as an average.  In contrast, real populations are subject to random 

perturbations, which do not allow population size to remain constant. This makes it necessary 

to consider possible random perturbations in analysis. For such cases, our paper offers a 

population dynamic modelling method that employs Markov dynamic impulse-type systems 

approach, allowing for discontinuity of trajectories at random time moments.  

2 Stochastic approximation procedure 

Let us formally describe the proposed predator-prey model. We assume that the dynamics of 

populations are not only determined by the system of equations (1.1), but also depend on the 

stationary Markov Poisson piecewise constant random process { ( ), 0}t t   defined by its 

infinitesimal operator [6]: 
1

0

1( )( ) ( ( ) ( ))Q v z v u v z du        (2.1)

where   is the small positive parameter. It means that if at the time 
0 0t   process  ( )t  is 

equal to 0( )t z  , then in the time interval  0 0[ , )t t t   , where   has an exponential

distribution with the parameter 1  , it maintains its value until the moment 0t  when the 

process jumps to the value 0( )t    , where  is independent on  uniformly on the 

segment [0, 1] distributed random variable.  The random variables   and   do not depend on 

history of the process { (s), }s t  . Consequently, for small 0   dynamical characteristics of 

the predator-prey system change very frequently. These changes happen only at the discrete 

random time moments { , }kt k N  . The length of intervals 1k k    have the exponential 

distribution with the parameter 1   . Our model for dynamics of predator-prey populations 

is given as 

• the differential equations for time intervals 1k kt    ; 

( ) ( )
( ( )) ( ), [ ( ( ))] ( );

dx t dy t
a x t x t M x t y t

dt dt
    (2.2) 

• the conditions of jumps for { , }kt k N  , kN : 
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( ) ( ) ( ) ( ( ), ( ))x t x t y t G t x t      (2.3) 

where, ( , )G x  and ( )M x are nonnegative and 
1

2

0

{ ( ( ), )} ( , ) ( ), {| ( ( ), ) | } ( )G t x G z x dz V x G t x D x   E E . 

Probabilistic properties of phase coordinates { ( ), ( ), 0}x t s y t s s    are independent of the 

history of these processes before the time t . Therefore, a vector stochastic process 

{ ( ), ( ), 0}x t y t t  possesses the Markov property and its probability characteristics are 

completely determined by the infinitesimal operator [6]: 

 
0

1
( ) ( , ) : lim [E{ ( ( ), ( )) / ( ( ) , ( ) } ( , )]

s
L v x y v x t s y t s v x t x y t y v x y

s



      (2.4) 

where ( , )v x y  is a bounded and continuously differentiable function. The previous formula 

shows the dependence of the infinitesimal operator on the small parameter   that defines the 

intensity of contacts between predator and prey. If s  , there is no contact between predator 

and prey species in the time interval [ , )t t s . Therefore, under condition ( ) , ( )x t x y t y  the 

increments on this interval are as follows: ( ) ( ) ( ) ( ),x t s x t sxa x o s     

( ) ( ) [ ( )] ( )y t s y t s M x y o s      . If s  , then in the time interval ( , )t t s  one contact 

between predator and prey individuals will take place and 

( ) ( ) ( ) ( ( ), ) ( )x t s x t sxa x yG t x o s       . After substitution of these increments into

formula (2.4) we can define the weak infinitesimal operator for the Markov process defined by 

equations (2.2) - (2.3) as:  

  1( ) ( , ) ( ) ( , ) { ( ( ( ), ), ) ( , )}

[ ( )}] ( , )

L v x y xa x v x y E v x yG t x y v x y
x

M x y v x y
y

   




    




  



It can be shown that there exists a limit   
0

lim ( ) ( , ) ( , )L v x y Lv x y





 , where 

 ( , ) ( ) ( ) ( , ) [ ( )] ( , )Lv x y xa x yV x v x y M x y v x y
x y


 

    
 

(2.5) 

The system of differential equations 

( ) ( ), [ ( )]
dx dy

xa x yV x M x y
dt dt

     (2.6) 

has been proven [7] to be an averaged system for the initial Markov dynamical system and the 

deviations of the solutions of the Markov dynamical system (2.2) - (2.3) from the corresponding 

solutions of the equation (2.6) have an order of  . Therefore, we can present the solution of 

the equations (2.2) - (2.3) in the form of a sum 

( ) ( ) ( ), ( ) ( ) ( )x t x t X t y t y t Y t      (2.7) 

and can proceed to the construction of a system of equations for two-dimensional Markov 

nonhomogeneous process  ( ), ( )X t Y t  . In order to calculate infinitesimal operator for this 

process we have:    ( ) ( , ) ( ) ( , ) ( )v X Y t v X Y O     , where 
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 

  

   
2

( ) ( , ) :

( , ) ( ( )) ( ) [ ( ( )) ( ( ))] ( ) ( ( ))}

1
( , ) ( ( ))} ( ) [ ( ( ))} ] ( , ) ( ) ( ( ))},

2

X

Y XX

t v X Y

v X Y a x t x t X a x t X V x t Y y t V x t X

v X Y XM x t y t M x t Y v X Y y t D x t

 

      

      

(2.8) 

and ( , )v X Y  is an arbitrary twice continuous differentiable function with bounded derivative. 

As proven in [7], for a sufficiently small  the probabilistic characteristics of the process 

 ( ), ( )X t Y t   do not differ much from the corresponding characteristics of the Markov process 

 ( ), ( )X t Y t defined by generator (2.8) on any finite time interval with the length of the order

of 1/  . By definition [6] the formula (2.8) corresponds to a two-dimensional diffusion

Markov vector-process 
( )

( ) :
( )

X t
X t

Y t

 
  
 

, defined by the equation: 

( ) ( ( ), ( )) ( ) ( ( ), ( )) ( )dX t A x t y t X t dt b x t y t dw t  (2.9) 

where 

( ( )) ( ) ( ( )) ( ) ( ( )) ( ( ))
( ( ), ( ))

( ( )) ( ) ( ( ))

a x t x t a x t y t V x t V x t
A x t y t

M x t y t M x t

    
     

, (2.10)

( ) ( ( ))
( ( ), ( ))

0

y t D x t
b x t y t

 
  
 

(2.11)

and ( )w t is a standard Wiener process. Using the definition [9] of the stochastic Ito differential 

equations we can derive the ordinary differential equation  

( ) ( ( ), ( )) ( ) ( ) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))T Td
Q t A x t y t X t X t A x t y t b x t y t b x t y t

dt
   (2.12) 

for covariance matrix of the solution of the equation (2.6). 

3 Impulse type logistic equation 

Suppose that the dynamics of the prey population ( )x t  in absence of contacts with predators 

may be described by the logistic growth equation 

1( )
( )(1 ( ))

dx t
rx t K x t

dt

  . (3.1) 

This model assumes that in the absence of a predator the prey population has a potential carrying 

capacity 0K   and develops according to the logistic law with an intrinsic growth rate 0r  . 

Predator and prey individuals interact at random, and these time moments of interaction 

T : { , }k k N  are discontinuities for the piece wise constant Poisson process with the 

infinitesimal operator (1.4). If the predator-prey contact occurs at time t  and predator 

population size at that moment is ( )y t , then the prey’s population size drops by 

( ) ( ) ( ) ( ( )) ( ))x t x t y t g t x t       (3.2) 

where 2 2( ( )) 0, E{ ( ( ))} 0, E{ ( ( ))}g t g t g t b       . The dynamics of the predator 

population at any time continuously changes according to 
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 
( )

( ) ( )
dy t

x t y t
dt

    (3.4) 

where 0  . Later we will use the results of the previous section with 

1( ) (1 ), ( ) , ( , ) ( )a x rx K x M x x G x g x      . The averaged dynamics of the predator-prey 

system may be given in the form of ordinary differential equations 

 1[ (1 ) ] ,
dx dy

r K x y x x y
dt dt

        (3.5) 

This dynamical system has 3 fixed points [8]: 

• the saddle point A
1
= (0,0);

• the point  2 ,0A K that is asymptotically stable for K  and a saddle for K 

• the point
1

3 2

( )
,
r K

A
  

 

 
  
 

 that has positive coordinates and for K   is 

asymptotically stable. 

Following these conclusions about the averaged system, we can analyse normalized deviations 

from the averaged trajectory 

   1/2 1/2( ), ( ) ( ( ) ( )), ( ( ) ( ))X t s Y t s x t s x t s y t s y t s             (3.6) 

using an approximation by the equation (2.9) with 

1(1 )
( , )) , ( , )

0

bxyr K x x y x
A x y b x y

y x

 

  

     
    

    
(3.7) 

If K  , then [8] lim ( ) 0, lim ( )
t t

y t x t K
 

  , 

0
lim ( ( ), ( )) : , lim ( ( ), ( ))

0 0t t

rK K
A x t y t H b x t y t

K



  

    
     

   

and the eigenvalues of matrix H are negative. This means that the covariance matrix Q(t) 

defined by the equation (2.19) tends to zero and random oscillations at the neighbourhood of 

the equilibrium A2 decay. 

If K   then [8] any solution of equation (3.5) tends to the equilibrium point 
3A and

2

1

2 2

2 3

( )
ˆˆlim ( ( ), ( )) A , lim ( ( ), ( ))

( )
0 0

t t

r
r K b

K
A x t y t b x t y t b

r K

K

 
 

  
 

 





 

 
    

     
    

   
 

Under assumption K   the eigenvalues of matrix Â  are negative. This means that at a

sufficiently small neighbourhood of the stable equilibrium point A3 the process ( )X t , as defined 

by the equation (2.9), under zero initial condition is a diffusion process [8] with a covariance 

matrix ( )Q t , as defined by equation (2.12). After further computations we may conclude that 

in the case of K   the populations of the prey and the predator are stabilizing near the fixed 
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point A3 and probabilistic characteristics of deviations from this equilibrium may be 

approximately considered as independent normally distributed random variables with variances 

correspondingly 

 
2 1 1 2 1 2 1

3 4 3 5

( )(2 ) ( ) (2 )
( ( )) , ( ( ))

2 2

b r K K b r K K
x t y t 

         
 

   

      
 D D  

4 The random impulsive Holling type model 

One of the most popular models of the dynamics of interacting predator and prey populations, 

such as those found within invertebrate and similar domains of life, in mathematical biology is 

the system of ordinary differential equations proposed in [5] and in detail analysed in [10]: 

 11 ,
dx mx dy mx

rx K x y y
dt A x dt A x

   
      

  
(4.1) 

where phase variables x and y denote the density of prey and predator populations 

respectively. In this model it is assumed that in the absence of a predator the prey population 

has a potential carrying capacity K  and develops according to the logistic law with an intrinsic 

growth rate r . In the absence of a prey the predator population exponentially decreases to zero 

with the intrinsic growth rate  . The mutual influence of changes in the densities of the prey 

and predator in model (4.1) is considered by the trophic function 1( )mxy A x  , where the 

positive parameter m  is the consumption rate or prey per unit of time by the predator. The 

positive parameter A  reflects the saturation of the amount of prey consumed and, in addition, 

depends on the rate of reaction of the predator, i.e., the time between attacks on the prey. The 

parameter   in formula (4.1) is a conversion factor that determines the effect of the prey 

consumed on the growth rate of the population of the predator. The model (4.1) is popular 

because under certain assumptions about positiveness of parameters , , , ,r K m A  and   it is 

structurally stable [2] with a unique asymptotically stable periodic trajectory. In this section we 

propose an impulsive Markov type model (2.2) - (2.3) with 

 1 ( )
( ) 1 , ( ) , ( , )

mx q x
a x r K x M x G x

A x A x


    

 
(4.2) 

where 2 2( ( )) 0,E{ ( ( ))} 0, E{ ( ( ))}q t q t m q t       , that makes it possible to take into 

account the stochastic character of the trophic function considered in the Holling type II model 

(4.1).  Substituting 

 
1

1

0

( ) 1 , ( , ) ( ) , ( )
mx mx

a x r K x G z x dz V x M x
A x A x

    
  (4.3) 

into the equation (2.8), the average population dynamics { ( ), ( )}x t y t  may be analysed by that 

equation (4.1), and [7] for any positive number 𝑇 and  𝑀 there exists such positive numbers 0

that 

1

sup {| ( ) ( ) | | ( ) ( ) |}
t T

x t x t y t y t M 





   E (4.4) 
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for all 
0  . As shown in [10,11], the system of equations (4.1) with the parameter values 

5m  , 18A , 2  , 4  has a unique asymptotically stable periodic trajectory, which

corresponds to initial values (0) 20, (0) 3x y  .  

Fig. 4.1. Phase trajectory of Markov process (2.2) - (2.3) - (4.1) and the limit cycle. 

In Figure 4.1 the trajectory shows the solution of the system of equations (2.2) - (2.3) - (4.1) for 

𝜀 = 0.01 corresponding to the initial conditions above, and defined by equation (4.1) limit 

cycle. We may approximate the normalized deviations from the averaged trajectories  

( ) ( ) ( ) ( )
( ) , ( )

x t x t y t y t
X t Y t 

 
 

 
  (4.5) 

by the vector solution 
( )

( ) :
( )

X t
X t

Y t

 
  
 

 of the equation (2.9) 

( ) ( ( ), ( )) ( ) ( ( ), ( )) ( )dX t A x t y t X t dt b x t y t dw t  (4.6) 

Where 

 

 

2

2

2
1

( )
( , ) ,

Aym xm
x r

K A xA x t
A x y

mA xm
y

A xA x
  

  
    

   
 

  
  

(4.7) 

 2( , )

0

yx

A xb x y 

 
 

  
 
 

(4.8) 

and there are zero initial conditions. The covariance matrix ( )Q t for the process ( )X t  is the 

matrix solution of a system of ordinary differential equations 

( ) ( ( ), ( )) ( ) ( ) ( ( ), ( )) ( , ) ( , )T Td
Q t A x t y t Q t Q t A x t y t b x y b x y

dt
  

Now we can approximate the finite dimensional distributions of the process { ( ), ( )}x t y t   by 

the corresponding distributions of the process ( ) ( ) ( ), ( ) ( ) ( )x t x t X t y t y t Y t      . 
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However, the variances of the normalized deviations increase very rapidly. For example, 
2E{| (20) | } 10000X  but the aforementioned cycle ordinate does not exceed the value 25. 
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