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Abstract:  We analyze a logistic type Markov impulsive differential model for interspecific 
competition of two populations under assumption that they come into contact at random 
time moments only but between the contacts they grow independently. Assuming the 
intervals be sufficiently small we apply the stochastic averaging procedure and construct an 
ordinary 2-dimensional differential equation for population dynamics in the mean and a 
linear 2-dimensional stochastic differential equation for deviations on the mean trajectories.  
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1   Introduction 
 
The famous mathematical model for competition of two populations for the first time appears in 
the papers [1,2]. Using the notations ( )x t  for the mass density of the first species and ( )y t  for the 
mass density of the second species at time moment t  the mentioned authors assume that the 
dynamics of  populations may be studied as the system of  ordinary differential equations: 

1 1
1 1 1 2 2 2( ) , ( )dx dy
r x K x y K r y K y x K

dt dt
                                    (1) 

where 1 0r   and 2 0r   are the birth rates  in absence of  intraspecific and interspecific  
competition,  1 0K   and 2 0K   are the asymptotic masses of the first and of the second species 
when they grow separately, and the coefficients 0, 0    show   the influences  of one species 
to another, that defines decreasing opportunity of growth. Later this model was analyzed in detail 
by many authors (see, for example, [3,4,5,6,7] and references there). The phase portrait of the 
dynamical system (1) has a very simple structure. There are only four stationary states 
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1 2 2 1
1 1 1 2 2 2 2 3 3 1 3 4 4 4: 0, 0; : 0, ; : , 0; : ,

1 1
K K K K

A x y A x y K A x K y A x y
 

 

 
       

 
        (2) 

These points define the following possibilities for the longtime behavior of the populations: A1  - 
both populations become extinct; A2  - the x-population converges to a certain value, bet y-
population disappears; A3 - the y-population converges to a certain value, bet x-population 
disappears; A4  - both population co-exist. As it has been shown in [8] the defined by the equations 
(1) dynamics of populations for any initial values (0) 0, (0) 0x y   may be described in the 
following way: 

1. the point A1  is unstable, that is,  for a long time exists at least one of the above populations; 
2. if 1 1 2 2 2 1,r K K r K K    then the point A2 is asymptotically stable, that is, 

1lim ( ) , lim ( ) 0
t t

x t K y t
 

  ; 

3. if 1 1 2 2 2 1,r K K r K K    then the point A3 is asymptotically stable, that is, 

2lim ( ) 0, lim ( )
t t

x t y t K
 

  ; 

4. if 
1 1 2 2 2 1,r K K r K K  

 then the point A4 is asymptotically stable, that is, 

1 2 2 1lim ( ) , lim ( )
1 1t t

K K K K
x t y t

 

  

 
 

 
; 

5. if 1 1 2 2 2 1,r K K r K K    then subject to initial conditions 1lim ( ) , lim ( ) 0
t t

x t K y t
 

   or 

2lim ( ) 0, lim ( )
t t

x t y t K
 

  . 

Naturally, in reality the above analyzed model (1) gives just a simplified view on the population 
dynamics. The deterministic approach to analysis of ecosystems for the first time was questioned 
by Feller [4]. Analyzing the logistic model for the real logistic type population dynamics he found 
that population trajectories could equally well be fitted by scaled normal distribution curves with 
time-dependent argument.  Therefore, later the deterministic model (1) was converted by many 
authors (see, for example, [4] and references there) into the Ito stochastic differential equations. In 
our paper we also analyze the stochastic modification of the two-species competition model, using 
as basis the following assumptions.  Note that the model (1) supposes a time-continuous   contact 
of populations. This means that within a very small time interval  [ , )t t   the impact of population 
y on population x may be given by term  1

1 1 ( ) ( )r K x t y t    and the impact of population x on 
population y by term 1

2 2 ( ) ( )r K x t y t   . Our model supposes that the populations come in contact 
at the random time moments 1 2 n      and time-intervals 1n n    are independent 
exponentially distributed random variables, 1{ }n n   E , where   is small positive parameter. 
The impacts of the populations against each other at the time moment n also are sufficiently small 
and random: the impact of the population y on population x is given by term  

1
1 1( ) ( ) ( )n n na r K x y       and  the impact of the population x on population y by term 

1
2 2( ) ( ) ( )n n nb r K x y       , where { , }n n N  is the independent on { , }n n N sequence of  

identically Uniform(0,1)-distributed  random variables. Specify that here and later we use a 
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notation  ( )f t  for the left limit, that is,  𝑓(𝑡 −) ≔ 𝑙𝑖𝑚
𝜏↑𝑡

𝑓(𝜏).   The formal definition of the above-
mentioned model will be proposed in the next section.  
 
2   The model 
 
As it has been mentioned in the previous section our paper deals with interspecific competition 
model for populations { ( ), 0}x t t   R  and { ( ), 0}y t t   R  under assumption that the 
populations come in contacts only at random time moments given by the increasing sequence 
T { , }k k N .  Index  0(0, )   is a small positive parameter, which we will use for asymptotic 
analysis of population dynamics. The sequence T consists of the switching time moments of the 
Markov process { ( ), 0}t t  , which is defined on the probability space ( , , ) P  by the 
infinitesimal operator [8] 

1
1

0

( )( ) ( ( ) )( ))Qv v z v dz                                  (3) 

where { ( ),z [0,1]}v z   is an arbitrary real continuous function. We assume that in absence of 
contacts the populations evolve independently in compliance with the logistic law: 

 1 1
1 1 1 2 2 2

( ) ( )( )( ( )) , ( )( ( ))dx t dy t
r x t K x t K r y t K y t K

dt dt

 
   

              (4) 

and at moments of contacts they have the jumps given by the equations: 

1 1
1 1 2 2( ) ( ) ( ( )) ( ) ( ), ( ) ( ) ( ( )) ( ) ( )x t x t K ra t x t y t y t y t K r b t x t y t                              (5)             

where ( ), ( )a z b z  are real continuous functions on segment [0,1]. Let { , 0}t t   be the minimal 
filtration [8] for the Markov process { ( ), 0}t t  .  By definition the two-dimensional random 
process { ( ), ( ), 0}x t y t t    is t -adopted and possesses the Markov property [8].  Besides, the 
dynamical characteristics given by equations (4)-(5) are homogeneous in time. Therefore, the 
process { ( ), ( ), 0}x t y t t    may be uniquely defined by the infinitesimal generator [8], which one 
can find calculated the limit 

 
0

1( ( ) )( , ) : lim { ( ( ), ( )) / (0) , (0) } ( , )
t

L v x y v x t y t x x y y v x y
t

   


   E      (6) 

for an arbitrary sufficiently smooth bounded function ( , )v x y .  Remind that by definition [8] of the 
Poisson process with infinitesimal generator (3) the time-intervals 1 0{ , , 0}k k k k      N  are 
independent, do not dependent on the sequence { ( ), }k k  N  and have an exponential distribution 
with parameter 1  . Not so difficult to calculate the limit (6):  
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   1 1
1 1 2 2

1
1

1 2
0

( ( ) )( , ) ( , y) ( ) ( , ) ( )

{ ( ( ) , ( ) )} ( , )

x yL v x y v x rx K x K v x y ry K y K y

v x ra xy y r b xy d v x y



     

 



     

 
    

 
E

    (7) 

 
3   Stochastic asymptotic analysis of population dynamics 
 
The assumption that the populations have rapid contacts implies the smallness of time intervals  

k  that have the exponential distribution with parameter  .  This parameter we will use for 
approximation of trajectories { ( ), ( ), 0}x t y t t    applying the stochastic approximation procedure 
proposed in [5,6,7].  The first step of this procedure is a construction of the ordinary differential 
equations for the mean values ( ) : { ( )}x t x tE  and ( ) : { ( )}y t y t E  of populations species.  For 
that we should pass to limit in (7) rushing   to zero: 

1 1
1 1 2 20

lim( ( ) )( , ) ( , ) (1 ) ( , ) (1 )x yL v x y v x y xr K x y v x y yr y K y x


   


               

 where
1 1

0 0

{ ( )} ( ) , { ( )} ( )a a d b b d           E E .  This means that the mean values of the 

populations species satisfy the same equations as (1):  

1 1
1 1 1 2 2 2( ) , ( )dx dy
r x K x y K r y K y x K

dt dt
                              (8)  

Not so difficult to ensure that A1, A2  and  A3 are equilibrium points for the dynamical system (4)-
(5) and the system (8). As it has been proved in [6] for sufficiently small 0   the dynamical 
systems (4)-(5) and (8) have the same local stability properties of the above equilibriums. The 
sample trajectories of the solutions of (4)-(5)  jointly with solutions of  equations (8) (magnitudes 
of  parameters 1 2 11,  1,  40,r r K      0.05,  𝐾2 = 50)  are shown below on the Fig. 1. As we 
can see the solutions of the  system (4)-(5) preserve behavior pattern of the corresponding solutions 
of the equation (8).  The equilibrium point A5 of the system (8) is not an equilibrium point for the 
dynamical system (4)-(5). If 

1 1 2 2 2 1,r K K r K K  
, then as we can see at the Fig.1, the sample 

trajectories of the dynamical system (4)-(5) have relatively large random deviations  
 ( ) ( ), ( ) ( )x t x t y t y t    from the corresponding trajectories of the average equations (8). To 
estimate the above mentioned deviations we need to do the second step of the diffusion 
approximation procedure.  
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As it has been shown in [6] for this aim we have to introduce the two-dimensional random 

processes of the normalized deviations:  

( ) ( ) ( ) ( )
( ) : , ( ) :

x t x t y t y t
z t u t 
 

 

 
                   (9) 

which by definition satisfies differential equations  

 

 

 

1
21 1

1

1
22 2

2

( )
( ) ( ) ( )( 2 ( )) ( ) ,

( )
( ) ( ) ( )( 2 ( )) ( )

dz t r K
x t y t z t K x t z t

dt

dy t r K
x t y t u t K y t u t

dt


 


 

  


  







      


     

 

       (10) 

for Tt and have the jumps 

 1

1 1

1

2 2

( ) ( ) ( ( )) ( ) ( ) ( )) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) ( ) ( )) ( ) ( )

z t z t K ra t x t y t z t y t x t u t z t u t

u t u t K r b t x t y t u t x t z t y t z t u t

     

     

   

   





             
  


              

  (11) 

at time moments Tt . Tt .  Like in previous section we can prove that defined by equations 

(8)-(10)-(11) four-dimensional process { ( ), ( ), ( ), ( ), 0}x t y t z t u t t    on the probability space 

( , , , , 0)t t P is homogeneous and possess the Markov property. To avoid cumbersome 

formulas, we will use the following notation 

{ } { / (0) , (0) , (0) , (0) }zu

xy x x y y z z u u       E E  

for conditional expectation. The weak infinitesimal operator of this Markov process 

{ ( ), ( ), ( ), ( ), 0}x t y t z t u t t   should be calculated by formula:  
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Fig. 1.  𝑟1𝐾1 < 𝛼𝐾2, 𝑟2𝐾2 < 𝛽𝐾1, 𝑥(0) = 10, 𝑦(0) = 40, 𝛼 = 0.5, 𝛽 = 1  
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0

1 1
1 1 1 2 2 2

1 1
1 1 2 2

1 1

1( ( ) )( , , , ) lim { ( ( ), ( ), ( ), ( ))} ( , , , )

( , , , ) ( ) ( , , , ) ( )

1 [ ( , , , ) ( , , , ) ]

( , , , )

zu

xy
t

x y

z u

z

v x y z u v x t y t z t u t v x y z u
t

v x y z u r x K x y K v x y z u r y K y x K

v x y z u r K xy xyv x y z u r K xy

v x y z u r K

 

 

  




 

 

    

       

   



E

   

1 1
1 2 2 2

1 2 1 2
1 1 2 2

1 1 1
1 1 2 2

1

( 2 ) ( , , , ) ( 2 )

[ ( , , , ) ( , , , ) ]

, , ( ) , ( ) ( )

( , , , )

u

z u

z K x v x y z u r K u K y

v x y z u r K z v x y z u r K u

v x y z K ra xy zy xu zu u K r b xy ux zy zu

v x y z u



        



 

 

  



   

   

            
   



E

 

According to stochastic approximation procedure [5] we should pass to limit in the previous 
formula for 0  , assumed that ( , , , )v x y z u is sufficiently smooth function:  

 
   

0
1 1

1 1 1 2 2 2

1 1
1 1 1 2 2 2

2 2 2 2
1 1 1

ˆ( )( , , , ) : lim( ( ) )( , , , )

( , , , ) ( ) ( , , , ) ( )

( , , , ) [ ( 2 ) ] ( , , , ) [ ( 2 ) ]
1 ( ) ( , ,
2

x y

z u

zz

v x y z u v x y z u

v x y z u r x K x y K v x y z u r y K y x K

v x y z u r K z K x zy xu v x y z u r K u K y zy xu

xy K r v x y z




 

 





 

 



 

       

         

 2 2 2 1 1
2 2 2 1 2 1 2 12, ) ( , , , ) 2 ( , , , )uu uzu K r v x y z u K K r r v x y z u       

  (12) 

where 2 2 2 2
1 2 12{ ( )}, { ( )}, { ( ) ( )}a b a b        E E E . The defined by this formula operator ˆ  

may be interpreted [5,7] as the weak infinitesimal operator of the Markov process 
ˆˆ{ ( ), ( ), ( ), ( ), 0}x t y t z t u t t  . This infinitesimal operator may be used to define on the probability 

space ( , , ) P  the systems of Ito stochastic linear inhomogeneous differential equations with 
dependent on { ( ), ( )}x t y t  drift and diffusion:  

 

 

1 1 1 1
1 1 1 1 1 1 1 1 2 1 2 12 2

1 1 1 1
2 2 2 2 2 2 1 1 2 1 2 12 2

1ˆˆ ˆ ˆ[ ( 2 ( )) ( ) ( ) ] ( ) ( ) ( ) 2 ( ) ,
2
1ˆ ˆ ˆˆ[ ( 2 ( )) ( ) ( ) ] ( ) ( ) ( ) 2 ( )
2

dz r K z K x t zy t x t u dt x t y t K r dw t K K rr dw t

du r K u K y t zy t x t u dt x t y t K r dw t K K rr dw t

  

  

   

   

         

       

 

  (13) 

where 1( )w t  and 2 ( )w t  are standard  independent  Wiener processes and { ( ), ( ), 0}x t y t t   is the 
solution of the equation system (8) with initial condition (0) (0)x x , (0) (0)y y  and 

ˆˆ{ ( ), ( ), 0}z t u t t   be the solution of the system (13). The two-dimensional process 
ˆˆ{ ( ) : ( ) ( ) ,Y ( ) : ( ) ( ) , 0}X t x t z t t y t u t t        where { ˆˆ( ), ( )z t u t } is the solution of the 

equations (13) with the trivial initial conditions ˆˆ(0) (0) 0z u    is called the Gaussian 

approximation of the process{ ( ), ( ), 0}x t y t t   . 
Therefore  ˆE{ ( )} 0z t   and ˆE{ ( )} 0u t  .  Not so difficult to ensure that if  lim ( ) ( ) 0

t
x t y t


  (the 

cases 1,2,3 and 5, section 1, the second page of this article) then 2ˆlim E{ ( )} 0
t

z t


  and 

ˆlimE{ ( )} 0
t

u t


 . This means if lim ( ) ( ) 0
t

x t y t


  then the Gaussian approximation process has the 
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same behavior as the corresponding solutions of the initial impulsive differential equations (4)-(5). 

But if 
1 1 2 2 2 1,r K K r K K  

 then 1 2lim ( ) :
1t

K K
x t x






 


and 2 1lim ( ) :

1t

K K
y t y






 


, that is, 

the drift and diffusion coefficients of the equation (12) stabilize. The corresponding to this limit 

stochastic differential equation for the vector 
ˆ( )

( )
ˆ( )
z t

z t
u t

 
  
 

 may be given as follows: 

( ) ( ) ( )dz t Az t dt dw t                                (14) 

where                  1

2

ˆ ( )( )
( ) , ( )

ˆ ( )( )
w tz t

z t w t
w tu t

  
    
   

, 
1 1 1

1 1 1 1 2 1 2 12

1 1 1
2 2 2 1 2 1 2 12

21
2 2

K r K K rr
xy

K r K K rr

 

 

  

  

 
  
 
 

, 

1 1
1 1 1 1 1

1 1
2 2 2 2 2

( 2 )
( 2 )

r K K x y r K x
A

r K y r K K y x

 

 

 

 

   
  

   

                            (15) 

Applying the Cauchy formula [5] we can find a vector solution of the equation (14) with initial 
condition  0 0( )Z t Z  as follows: 

   
0

0 0( ) exp ( ) exp ( ) ( )
t

t

Z t t t A Z t s A dw s          (16) 

Recall that we should apply the formula (16) with 0 0t   and (0) 0Z  . The sample trajectories for  
the coordinates  ( ),Y ( )X t t 

 of  corresponding to magnitudes of parameters 

1 2 11,  1,  40,r r K      0.05,  2 50, 0.5,  1K     , 𝑥(0) = 10, 𝑦(0) = 40 Gaussian 
approximation are shown below on the Fig. 2. 

 
Fig.2. The sample trajectories of the Gaussian approximation. 

Under assumptions 1 1 2 2 2 1,r K K r K K    the eigenvalues of the matrix A  are negative. 
Therefore, with probability one there exists a limit [5]:  
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 
0

( )
lim ( ) ( ) : exp ( ) ( )

( )

t

t

z t
Z t Z t t s A dw s

u t


 
     

 
 (17) 

Not so difficult to ensure that this integral defines the two-dimensional Gaussian process with zero 

mean and constant covariance matrix   2

0

ˆ expQ tA dt



  . This means that for sufficiently large t

>0 the probability distribution function for the coordinates of process (17) may be approximated
as a two-dimensional Gaussian distribution
   P ( ) , ( ) P ( ) , ( )X t X Y t Y x t X y t Y           where random vector { , }    has the 

zero mean and covariance matrix Q̂  defined by equation 2ˆ ˆ TAQ QA   . 
 4   Conclusion 

Applying the asymptotic methods of the contemporary stochastic analysis [5,6,7] we have 
constructed the average differential equations for the described in Section 2 Markov impulsive 
differential model for interspecific competition of two populations in a form (1) and the stochastic 
differential equations for the Gaussian deviations of the random trajectories on the corresponding 
solutions of the average equations.   
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